Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 1675, 2022 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-35102235

RESUMO

Soiling of photovoltaic modules and the reflection of incident light from the solar panel glass reduces the efficiency and performance of solar panels; therefore, the glass should be improved to have antifouling properties. In this work, commercial solar panels were coated with sparked titanium films, and the antireflective, super-hydrophilic, and photocatalytic properties of the films were investigated. The reflectance, photocatalytic properties, and degradation of the organic pollutant methylene blue were determined using UV-Vis spectroscopy. The wetting properties were studied by measuring the water contact angle using an optical tensiometer. The outdoor power of the spark-discharged-titanium coated and uncoated PV panels was measured for 10 months at Chiang Mai, Thailand. It was found that conditions such as cloudiness, rainfall, and muddy stains significantly influenced the power difference (ΔP) between the coated and uncoated PV panels. The increase in ΔP was due to the improved dust removal from the super-hydrophilic surface of the coated panels. On a cloudy day, ΔP reached its highest value of 14.22%, which was anticipated to improve the anti-reflection property of the coated glass. The average ΔP was 6.62% over the entire experimental period.

2.
Sci Rep ; 10(1): 4645, 2020 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-32157104

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

3.
Sci Rep ; 10(1): 1388, 2020 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-31996721

RESUMO

We examine the influence of the magnetic field on the chemical reaction of nitrogen and carbon dioxide in sparking electric discharge of zinc wires. Samples are prepared on Indium Tin Oxide (ITO) and quartz substrates in the form of thin films at 0 T, 0.2 T and 0.4 T. Different chemical composition of thin-films prepared by sparking discharge was obtained and verified by XPS, Raman and Cyclic voltammetry. Carbon dioxide conversion to carbonates was observed for zinc sparked in CO2 and nitrogen affecting crystallization of thin films was confirmed by XRD. Synthesis route for thin-film preparation used in this study is electric sparking discharge, convenient for fast ionization of metal and gasses. Band gap energy of thin films prepared by this method was starting from 2.81 eV and 4.24 eV, with the lowest band gaps prepared on ITO in 0.4 T. Dynamic mobility analysis (DMA) indicates smaller particles are fabricated by discharging zinc wires in a higher magnetic field. Nitridification of zinc nanoparticles occurred on 0.2 Tesla magnetic field strength and it was detectable even after XPS ion gun etching. Carbonation and nitridification of zinc thin films by sparking wires inside the magnetic field to observe the effect of the magnetic field on bandgap and chemical composition are confirmed by XPS.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...