Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 254(Pt 2): 127694, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37898248

RESUMO

To explore the possibility of applying lignin in practice, an industrial lignosulfonate (0-50 vol%) was blended with four ionomers. The concentrations of carboxyl and carboxylate groups were systematically varied in the ethylene-acrylic acid copolymers to study the competition of hydrogen and ionic bonds forming between the components. The mechanical properties of the blends were determined by tensile testing. The structure was investigated by scanning electron microscopy, while deformation and failure processes were studied by acoustic emission measurements and microscopy. Interfacial interactions were quantitatively characterized by analyzing local deformation processes and by evaluating the composition dependence of the tensile strength using appropriate models. Molecular dynamics simulations indicated that carboxylate groups preferably form clusters in the ionomer phase, consequently, the increasing degree of neutralization results in ionomers with more and more self-interactions of components deteriorating ionomer-lignin interactions. The novel combination of experiments, modeling, and simulation was done for the first time on such materials, and it pointed out that the role of hydrogen bonds is more critical in determining blend properties. Blends can be prepared for practical applications with a good combination of stiffness (0.8 GPa), tensile strength (22 MPa), and elongation-at-break (25 %) at 30 vol% lignosulfonate content and 33 % neutralization.


Assuntos
Lignina , Polímeros , Polímeros/química , Lignina/química , Resistência à Tração
2.
Polymers (Basel) ; 13(18)2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34577999

RESUMO

This paper presents a comprehensive study about the application of a lignocellulosic agricultural waste, sunflower husk in different polymer composites. Two types of milled sunflower husk with different geometrical factors were incorporated into polypropylene, low-density and high-density polyethylene, polystyrene (PS), glycol-modified polyethylene terephthalate (PETG) and polylactic acid (PLA). The filler content of the composites varied between 0 and 60 vol%. The components were homogenized in an internal mixer and plates were compression molded for testing. The Lewis-Nielsen model was fitted to the moduli of each composite series, and it was found that the physical contact of the filler particles is a limiting factor of composite modulus. Interfacial interactions were estimated from two independent approaches. Firstly, the extent of reinforcement was determined from the composition dependence of tensile strength. Secondly, the reversible work of adhesion was calculated from the surface energies of the components. As only weak van der Waals interactions develop in the interphase of polyolefins and sunflower husk particles, adhesion is weak in their composites resulting in poor reinforcement. Interfacial adhesion enhanced by specific interactions in the interphase, such as π electron interactions for PS, hydrogen bonds for PLA, and both for PETG based composites.

3.
Polymers (Basel) ; 13(18)2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34578087

RESUMO

Composite films were fabricated by using cellulose nanocrystals (CNCs) as reinforcement up to 50 wt% in thermoplastic starch (TPS). Structure and interactions were modified by using different types (glycerol and sorbitol) and different amounts (30 and 40%) of plasticizers. The structure of the composites was characterized by visible spectroscopy, Haze index measurements, and scanning electron microscopy. Tensile properties were determined by tensile testing, and the effect of CNC content on vapor permeability was investigated. Although all composite films are transparent and can hardly be distinguished by human eyes, the addition of CNCs somewhat decreases the transmittance of the films. This can be related to the increased light scattering of the films, which is caused by the aggregation of nanocrystals, leading to the formation of micron-sized particles. Nevertheless, strength is enhanced by CNCs, mostly in the composite series prepared with 30% sorbitol. Additionally, the relatively high water vapor permeability of TPS is considerably decreased by the incorporation of at least 20 wt% CNCs. Reinforcement is determined mostly by the competitive interactions among starch, nanocellulose, and plasticizer molecules. The aging of the films is caused by the additional water uptake from the atmosphere and the retrogradation of starch.

4.
Carbohydr Polym ; 194: 51-60, 2018 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-29801858

RESUMO

From the suspensions of cellulose nanocrystals (CNCs) derived from cotton and flax by acidic hydrolysis, transparent and smooth films were produced with different plasticizers and an amino-aldehyde based cross-linking agent in a wide composition range by a simultaneous casting and wet cross-linking process. The effect of cross-linker concentration on the optical and tensile properties and on the morphology of CNC films was investigated by various measurements. The interaction of films with liquid water and water vapour was also characterized by water sorption and water contact angle as well as performing a sinking test. Cross-linking improved the transparency, reduced the porosity and surface free energy, and prevented the delamination of CNC films in water at a concentration of 10% or higher. The surface of CNC films is basic in character and has an electron donor property. The CNC/amino-aldehyde films had a high tensile strength (45 MPa) and modulus (11 GPa).


Assuntos
Aldeídos/química , Materiais Biocompatíveis/química , Celulose/química , Reagentes de Ligações Cruzadas/química , Nanopartículas/química , Adsorção , Água/química
5.
Int J Biol Macromol ; 107(Pt A): 1203-1211, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28958821

RESUMO

Blends were prepared from lignin and ethylene-vinyl alcohol (EVOH) copolymers to study the effect of hydrogen bonding interactions on compatibility and structure. The vinyl alcohol (VOH) content of the copolymers changed between 52 and 76 mol%, while the lignin content of the blends varied between 0 and 60 vol%. Low density polyethylene with 0 mol% VOH content was used as reference. The components were homogenized in an internal mixer and they were characterized by various methods including Fourier transform infrared spectroscopy (FTIR), dynamic mechanical analysis, differential scanning calorimetry and scanning electron microscopy. The results of the experiments proved that strong hydrogen bonds form between the two components shown by FTIR spectroscopy, a shift in the relaxation temperatures of the matrix polymer and by the decrease of crystallite size and crystallinity with increasing lignin content. In spite of the strong interactions, heterogeneous structure forms in the studied blends since self-interactions within the neat components are also very strong. The size of dispersed lignin particles is determined by competitive interactions in the blends; stronger EVOH/lignin interactions result in smaller particle size. Although hydrogen bonds are strong, miscible polymer/lignin blends can be prepared only by applying other approaches like plasticization or chemical modification.


Assuntos
Lignina/química , Polímeros/química , Polivinil/química , Varredura Diferencial de Calorimetria , Etanol/química , Ligação de Hidrogênio , Microscopia Eletrônica de Varredura , Estrutura Molecular , Tamanho da Partícula , Polietileno/química , Espectroscopia de Infravermelho com Transformada de Fourier
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...