Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Yonsei Medical Journal ; : 294-302, 1992.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-50768

RESUMO

This experiment involved 12 rabbits of both sexes, weighing 2.1 kg. After anesthesia, the kidneys were exposed, isolated and cannulated in the renal artery, ureter and sometimes in the vein as well. The kidney were perfused through the renal artery with Krebs-Henseleit solution, which were then filtered to be free of particles, gased with 95% O2-5% CO2, and kept at 37 degrees C. We measured RBCs concentrations by means of Coulter Counter in the venous outflow collected, and plotted them against the volume perfused. Using 2 different flow rates, 9 ml/min (group I) and 19 ml/min (group II), we found that the RBCs decreased in a multiexponential decay fashion and a biophysical model for each flow rate was constructed. These models indicated that there were more cell stores (2.20 x 10(10)) in the fast compartment of group II than in group I (1.72 x 10(10)). This difference is not statistically significant, but certainly coincides with urine flow collected from ureter cannula during perfusion. Our present data clearly suggest that in order to clear 99% blood cells out of 10-12 gm rabbit kidneys, at least 3-6 ml of cell free perfusate is required while clearing the whole blood cells out of human kidneys (200-240 gm) may need 600 ml or more. Thus, we recommend that at least 600 ml of perfusate should be used to clear most of the blood cells in the renal vasculature before renal transplantation is performed.


Assuntos
Feminino , Masculino , Coelhos , Animais , Contagem de Eritrócitos , Eritrócitos/fisiologia , Técnicas In Vitro , Cinética , Modelos Biológicos , Perfusão , Circulação Renal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...