Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 11(1)2019 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-30960130

RESUMO

2-Hydroxypropyl-ß-cyclodextrin (HPßCD) has unique properties to enhance the stability and the solubility of low water-soluble compounds by inclusion complexation. An understanding of the structural properties of HPßCD and its derivatives, based on the number of 2-hydroxypropyl (HP) substituents at the α-d-glucopyranose subunits is rather important. In this work, replica exchange molecular dynamics simulations were performed to investigate the conformational changes of single- and double-sided HP-substitution, called 6-HPßCDs and 2,6-HPßCDs, respectively. The results show that the glucose subunits in both 6-HPßCDs and 2,6-HPßCDs have a lower chance of flipping than in ßCD. Also, HP groups occasionally block the hydrophobic cavity of HPßCDs, thus hindering drug inclusion. We found that HPßCDs with a high number of HP-substitutions are more likely to be blocked, while HPßCDs with double-sided HP-substitutions have an even higher probability of being blocked. Overall, 6-HPßCDs with three and four HP-substitutions are highlighted as the most suitable structures for guest encapsulation, based on our conformational analyses, such as structural distortion, the radius of gyration, circularity, and cavity self-closure of the HPßCDs.

2.
J Chem Inf Model ; 57(4): 778-786, 2017 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-28271890

RESUMO

Large ring cyclodextrins have become increasingly important for drug delivery applications. In this work, we have performed replica-exchange molecular dynamics simulations using both implicit and explicit water solvation models to study the conformational diversity of iota-cyclodextrin containing 14 α-1,4 glycosidic linked d-glucopyranose units (CD14). The new quantifiable calculation methods are proposed to analyze the openness, bending, and twisted conformation of CD14 in terms of circularity, biplanar angle, and one-directional conformation (ODC). CD14 in GB implicit water model (Igb5) was found mostly in an opened conformation with average circularity of 0.39 ± 0.16 and a slight bend with average biplanar angle of 145.5 ± 16.0°. In contrast, CD14 in TIP3P explicit water solvation is significantly twisted with average circularity of 0.16 ± 0.10, while 29.1% are ODCs. In addition, classification of CD14 conformations using a Gaussian mixture model (GMM) shows that 85.0% of all CD14 in implicit water at 300 K correspond to the elliptical conformation, in contrast to 82.3% in twisted form in explicit water. GMM clustering also reveals minority conformations of CD14 such as the 8-shape, boat-form, and twisted conformations. This work provides fundamental insights into CD14 conformation, influence of solvation models, and also proposes new quantifiable analysis techniques for molecular conformation studies in the future.


Assuntos
Ciclodextrinas/química , Simulação de Dinâmica Molecular , Configuração de Carboidratos , Solventes/química , Termodinâmica , Água/química
3.
Beilstein J Org Chem ; 11: 2306-2317, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26734079

RESUMO

Cyclodextrins (CDs) have been extensively utilized as host molecules to enhance the solubility, stability and bioavailability of hydrophobic drug molecules through the formation of inclusion complexes. It was previously reported that the use of co-solvents in such studies may result in ternary (host:guest:co-solvent) complex formation. The objective of this work was to investigate the effect of ethanol as a co-solvent on the inclusion complex formation between α-mangostin (α-MGS) and ß-CD, using both experimental and theoretical studies. Experimental phase-solubility studies were carried out in order to assess complex formation, with the mechanism of association being probed using a mathematical model. It was found that α-MGS was poorly soluble at low ethanol concentrations (0-10% v/v), but higher concentrations (10-40% v/v) resulted in better α-MGS solubility at all ß-CD concentrations studied (0-10 mM). From the equilibrium constant calculation, the inclusion complex is still a binary complex (1:1), even in the presence of ethanol. The results from our theoretical study confirm that the binding mode is binary complex and the presence of ethanol as co-solvent enhances the solubility of α-MGS with some effects on the binding affinity with ß-CD, depending on the concentration employed.

4.
J Chem Phys ; 140(18): 18A529, 2014 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-24832337

RESUMO

We introduce an extension of the divide-and-conquer (DC) algorithmic paradigm called divide-conquer-recombine (DCR) to perform large quantum molecular dynamics (QMD) simulations on massively parallel supercomputers, in which interatomic forces are computed quantum mechanically in the framework of density functional theory (DFT). In DCR, the DC phase constructs globally informed, overlapping local-domain solutions, which in the recombine phase are synthesized into a global solution encompassing large spatiotemporal scales. For the DC phase, we design a lean divide-and-conquer (LDC) DFT algorithm, which significantly reduces the prefactor of the O(N) computational cost for N electrons by applying a density-adaptive boundary condition at the peripheries of the DC domains. Our globally scalable and locally efficient solver is based on a hybrid real-reciprocal space approach that combines: (1) a highly scalable real-space multigrid to represent the global charge density; and (2) a numerically efficient plane-wave basis for local electronic wave functions and charge density within each domain. Hybrid space-band decomposition is used to implement the LDC-DFT algorithm on parallel computers. A benchmark test on an IBM Blue Gene/Q computer exhibits an isogranular parallel efficiency of 0.984 on 786 432 cores for a 50.3 × 10(6)-atom SiC system. As a test of production runs, LDC-DFT-based QMD simulation involving 16 661 atoms is performed on the Blue Gene/Q to study on-demand production of hydrogen gas from water using LiAl alloy particles. As an example of the recombine phase, LDC-DFT electronic structures are used as a basis set to describe global photoexcitation dynamics with nonadiabatic QMD (NAQMD) and kinetic Monte Carlo (KMC) methods. The NAQMD simulations are based on the linear response time-dependent density functional theory to describe electronic excited states and a surface-hopping approach to describe transitions between the excited states. A series of techniques are employed for efficiently calculating the long-range exact exchange correction and excited-state forces. The NAQMD trajectories are analyzed to extract the rates of various excitonic processes, which are then used in KMC simulation to study the dynamics of the global exciton flow network. This has allowed the study of large-scale photoexcitation dynamics in 6400-atom amorphous molecular solid, reaching the experimental time scales.

5.
J Chem Phys ; 134(24): 244702, 2011 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-21721652

RESUMO

The atomistic mechanism of rapid hydrogen production from water by an aluminum cluster is investigated by ab initio molecular dynamics simulations on a parallel computer. A low activation-barrier mechanism of hydrogen production is found, in which a pair of Lewis acid and base sites on the cluster surface plays a crucial role. Hydrogen production is assisted by rapid proton transport in water via a chain of hydrogen-bond switching events similar to the Grotthuss mechanism, where hydroxide ions are converted to water molecules at the Lewis-acid sites and hydrogen atoms are supplied at the Lewis-base sites. The activation free energy is estimated along various reaction paths associated with hydrogen production, and the corresponding reaction rates are discussed based on the transition state theory.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...