Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neural Eng ; 21(2)2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38479026

RESUMO

Objective.Although human induced pluripotent stem cell (iPSC)-derived cell replacement for Parkinson's disease has considerable reparative potential, its full therapeutic benefit is limited by poor graft survival and dopaminergic maturation. Injectable biomaterial scaffolds, such as collagen hydrogels, have the potential to address these issues via a plethora of supportive benefits including acting as a structural scaffold for cell adherence, shielding from the host immune response and providing a reservoir of neurotrophic factors to aid survival and differentiation. Thus, the aim of this study was to determine if a neurotrophin-enriched collagen hydrogel could improve the survival and maturation of iPSC-derived dopaminergic progenitors (iPSC-DAPs) after transplantation into the rat parkinsonian brain.Approach.Human iPSC-DAPs were transplanted into the 6-hydroxydopamine-lesioned striatum either alone, with the neurotrophins GDNF and BDNF, in an unloaded collagen hydrogel, or in a neurotrophin-loaded collagen hydrogel.Post-mortem, human nuclear immunostaining was used to identify surviving iPSC-DAPs while tyrosine hydroxylase immunostaining was used to identify iPSC-DAPs that had differentiated into mature dopaminergic neurons.Main results.We found that iPSC-DAPs transplanted in the neurotrophin-enriched collagen hydrogel survived and matured significantly better than cells implanted without the biomaterial (8 fold improvement in survival and 16 fold improvement in dopaminergic differentiation). This study shows that transplantation of human iPSC-DAPs in a neurotrophin-enriched collagen hydrogel improves graft survival and maturation in the parkinsonian rat brain.Significance.The data strongly supports further investigation of supportive hydrogels for improving the outcome of iPSC-derived brain repair in Parkinson's disease.


Assuntos
Células-Tronco Pluripotentes Induzidas , Doença de Parkinson , Ratos , Animais , Humanos , Fatores de Crescimento Neural/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/transplante , Hidrogéis/química , Doença de Parkinson/terapia , Encéfalo/metabolismo , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/transplante , Materiais Biocompatíveis , Colágeno , Diferenciação Celular
2.
Sci Adv ; 9(46): eadi7359, 2023 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-37967183

RESUMO

Protein misfolding and aggregation is a characteristic of many neurodegenerative disorders, including Alzheimer's and Parkinson's disease. The oligomers generated during aggregation are likely involved in disease pathogenesis and present promising biomarker candidates. However, owing to their small size and low concentration, specific tools to quantify and characterize aggregates in complex biological samples are still lacking. Here, we present single-molecule two-color aggregate pulldown (STAPull), which overcomes this challenge by probing immobilized proteins using orthogonally labeled detection antibodies. By analyzing colocalized signals, we can eliminate monomeric protein and specifically quantify aggregated proteins. Using the aggregation-prone alpha-synuclein protein as a model, we demonstrate that this approach can specifically detect aggregates with a limit of detection of 5 picomolar. Furthermore, we show that STAPull can be used in a range of samples, including human biofluids. STAPull is applicable to protein aggregates from a variety of disorders and will aid in the identification of biomarkers that are crucial in the effort to diagnose these diseases.


Assuntos
Doença de Parkinson , Agregados Proteicos , Humanos , Doença de Parkinson/metabolismo
3.
Protein Sci ; 32(10): e4736, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37515406

RESUMO

Many proteins that self-assemble into amyloid and amyloid-like fibers can adopt diverse polymorphic forms. These forms have been observed both in vitro and in vivo and can arise through variations in the steric-zipper interactions between ß-sheets, variations in the arrangements between protofilaments, and differences in the number of protofilaments that make up a given fiber class. Different polymorphs arising from the same precursor molecule not only exhibit different levels of toxicity, but importantly can contribute to different disease conditions. However, the factors which contribute to formation of polymorphic forms of amyloid fibrils are not known. In this work, we show that in the presence of 1,2-dimyristoyl-sn-glycero-3-phospho-L-serine, a highly abundant lipid in the plasma membrane of neurons, the aggregation of α-synuclein is markedly accelerated and yields a diversity of polymorphic forms under identical experimental conditions. This morphological diversity includes thin and curly fibrils, helical ribbons, twisted ribbons, nanotubes, and flat sheets. Furthermore, the amyloid fibrils formed incorporate lipids into their structures, which corroborates the previous report of the presence of α-synuclein fibrils with high lipid content in Lewy bodies. Thus, the present study demonstrates that an interface, such as that provided by a lipid membrane, can not only modulate the kinetics of α-synuclein amyloid aggregation but also plays an important role in the formation of morphological variants by incorporating lipid molecules in the process of amyloid fibril formation.


Assuntos
Amiloide , alfa-Sinucleína , alfa-Sinucleína/química , Amiloide/química , Membrana Celular/metabolismo , Corpos de Lewy/metabolismo , Lipídeos
4.
Front Neurosci ; 17: 1095761, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37292159

RESUMO

Parkinson's disease (PD) is a neurodegenerative condition with several major hallmarks, including loss of substantia nigra neurons, reduction in striatal dopaminergic function, and formation of α-synuclein-rich Lewy bodies. Mutations in SNCA, encoding for α-synuclein, are a known cause of familial PD, and the G51D mutation causes a particularly aggressive form of the condition. CRISPR/Cas9 technology was used to introduce the G51D mutation into the endogenous rat SNCA gene. SNCAG51D/+ and SNCAG51D/G51D rats were born in Mendelian ratios and did not exhibit any severe behavourial defects. L-3,4-dihydroxy-6-18F-fluorophenylalanine (18F-DOPA) positron emission tomography (PET) imaging was used to investigate this novel rat model. Wild-type (WT), SNCAG51D/+ and SNCAG51D/G51D rats were characterized over the course of ageing (5, 11, and 16 months old) using 18F-DOPA PET imaging and kinetic modelling. We measured the influx rate constant (Ki) and effective distribution volume ratio (EDVR) of 18F-DOPA in the striatum relative to the cerebellum in WT, SNCAG51D/+ and SNCAG51D/G51D rats. A significant reduction in EDVR was observed in SNCAG51D/G51D rats at 16 months of age indicative of increased dopamine turnover. Furthermore, we observed a significant asymmetry in EDVR between the left and right striatum in aged SNCAG51D/G51D rats. The increased and asymmetric dopamine turnover observed in the striatum of aged SNCAG51D/G51D rats reflects one aspect of prodromal PD, and suggests the presence of compensatory mechanisms. SNCAG51D rats represent a novel genetic model of PD, and kinetic modelling of 18F-DOPA PET data has identified a highly relevant early disease phenotype.

5.
J Clin Invest ; 133(14)2023 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-37200096

RESUMO

Hypertrophic cardiomyopathy (HCM) is the most prominent cause of sudden cardiac death in young people. Due to heterogeneity in clinical manifestations, conventional HCM drugs have limitations for mitochondrial hypertrophic cardiomyopathy. Discovering more effective compounds would be of substantial benefit for further elucidating the pathogenic mechanisms of HCM and treating patients with this condition. We previously reported the MT-RNR2 variant associated with HCM that results in mitochondrial dysfunction. Here, we screened a mitochondria-associated compound library by quantifying the mitochondrial membrane potential of HCM cybrids and the survival rate of HCM-induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) in galactose media. 1-Deoxynojirimycin (DNJ) was identified to rescue mitochondrial function by targeting optic atrophy protein 1 (OPA1) to promote its oligomerization, leading to reconstruction of the mitochondrial cristae. DNJ treatment further recovered the physiological properties of HCM iPSC-CMs by improving Ca2+ homeostasis and electrophysiological properties. An angiotensin II-induced cardiac hypertrophy mouse model further verified the efficacy of DNJ in promoting cardiac mitochondrial function and alleviating cardiac hypertrophy in vivo. These results demonstrated that DNJ could be a potential mitochondrial rescue agent for mitochondrial hypertrophic cardiomyopathy. Our findings will help elucidate the mechanism of HCM and provide a potential therapeutic strategy.


Assuntos
1-Desoxinojirimicina , Cardiomiopatia Hipertrófica , Animais , Camundongos , 1-Desoxinojirimicina/farmacologia , 1-Desoxinojirimicina/metabolismo , Cardiomiopatia Hipertrófica/tratamento farmacológico , Cardiomiopatia Hipertrófica/genética , Cardiomiopatia Hipertrófica/metabolismo , Mitocôndrias/metabolismo , Miócitos Cardíacos/metabolismo , Cardiomegalia/tratamento farmacológico , Cardiomegalia/genética , Cardiomegalia/metabolismo
6.
J Am Soc Mass Spectrom ; 34(5): 847-856, 2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-36976861

RESUMO

α-Synuclein (αSyn), a 140-residue intrinsically disordered protein, comprises the primary proteinaceous component of pathology-associated Lewy body inclusions in Parkinson's disease (PD). Due to its association with PD, αSyn is studied extensively; however, the endogenous structure and physiological roles of this protein are yet to be fully understood. Here, ion mobility-mass spectrometry and native top-down electron capture dissociation fragmentation have been used to elucidate the structural properties associated with a stable, naturally occurring dimeric species of αSyn. This stable dimer appears in both wild-type (WT) αSyn and the PD-associated variant A53E. Furthermore, we integrated a novel method for generating isotopically depleted protein into our native top-down workflow. Isotope depletion increases signal-to-noise ratio and reduces the spectral complexity of fragmentation data, enabling the monoisotopic peak of low abundant fragment ions to be observed. This enables the accurate and confident assignment of fragments unique to the αSyn dimer to be assigned and structural information about this species to be inferred. Using this approach, we were able to identify fragments unique to the dimer, which demonstrates a C-terminal to C-terminal interaction between the monomer subunits. The approach in this study holds promise for further investigation into the structural properties of endogenous multimeric species of αSyn.


Assuntos
Proteínas Intrinsicamente Desordenadas , Doença de Parkinson , Humanos , alfa-Sinucleína/química , Doença de Parkinson/metabolismo , Espectrometria de Massas , Proteínas Intrinsicamente Desordenadas/metabolismo
7.
Angew Chem Int Ed Engl ; 62(15): e202216771, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36762870

RESUMO

Protein misfolding and aggregation into oligomeric and fibrillar structures is a common feature of many neurogenerative disorders. Single-molecule techniques have enabled characterization of these lowly abundant, highly heterogeneous protein aggregates, previously inaccessible using ensemble averaging techniques. However, they usually rely on the use of recombinantly-expressed labeled protein, or on the addition of amyloid stains that are not protein-specific. To circumvent these challenges, we have made use of a high affinity antibody labeled with orthogonal fluorophores combined with fast-flow microfluidics and single-molecule confocal microscopy to specifically detect α-synuclein, the protein associated with Parkinson's disease. We used this approach to determine the number and size of α-synuclein aggregates down to picomolar concentrations in biologically relevant samples.


Assuntos
Doença de Parkinson , alfa-Sinucleína , Humanos , alfa-Sinucleína/química , Doença de Parkinson/metabolismo , Agregados Proteicos , Amiloide/química , Proteínas Amiloidogênicas
8.
Angew Chem Weinheim Bergstr Ger ; 135(15): e202216771, 2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38516037

RESUMO

Protein misfolding and aggregation into oligomeric and fibrillar structures is a common feature of many neurogenerative disorders. Single-molecule techniques have enabled characterization of these lowly abundant, highly heterogeneous protein aggregates, previously inaccessible using ensemble averaging techniques. However, they usually rely on the use of recombinantly-expressed labeled protein, or on the addition of amyloid stains that are not protein-specific. To circumvent these challenges, we have made use of a high affinity antibody labeled with orthogonal fluorophores combined with fast-flow microfluidics and single-molecule confocal microscopy to specifically detect α-synuclein, the protein associated with Parkinson's disease. We used this approach to determine the number and size of α-synuclein aggregates down to picomolar concentrations in biologically relevant samples.

9.
NPJ Parkinsons Dis ; 8(1): 162, 2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36424392

RESUMO

Mutations in the SNCA gene cause autosomal dominant Parkinson's disease (PD), with loss of dopaminergic neurons in the substantia nigra, and aggregation of α-synuclein. The sequence of molecular events that proceed from an SNCA mutation during development, to end-stage pathology is unknown. Utilising human-induced pluripotent stem cells (hiPSCs), we resolved the temporal sequence of SNCA-induced pathophysiological events in order to discover early, and likely causative, events. Our small molecule-based protocol generates highly enriched midbrain dopaminergic (mDA) neurons: molecular identity was confirmed using single-cell RNA sequencing and proteomics, and functional identity was established through dopamine synthesis, and measures of electrophysiological activity. At the earliest stage of differentiation, prior to maturation to mDA neurons, we demonstrate the formation of small ß-sheet-rich oligomeric aggregates, in SNCA-mutant cultures. Aggregation persists and progresses, ultimately resulting in the accumulation of phosphorylated α-synuclein aggregates. Impaired intracellular calcium signalling, increased basal calcium, and impairments in mitochondrial calcium handling occurred early at day 34-41 post differentiation. Once midbrain identity fully developed, at day 48-62 post differentiation, SNCA-mutant neurons exhibited mitochondrial dysfunction, oxidative stress, lysosomal swelling and increased autophagy. Ultimately these multiple cellular stresses lead to abnormal excitability, altered neuronal activity, and cell death. Our differentiation paradigm generates an efficient model for studying disease mechanisms in PD and highlights that protein misfolding to generate intraneuronal oligomers is one of the earliest critical events driving disease in human neurons, rather than a late-stage hallmark of the disease.

11.
Nat Neurosci ; 25(9): 1134-1148, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36042314

RESUMO

Aggregation of alpha-synuclein (α-Syn) drives Parkinson's disease (PD), although the initial stages of self-assembly and structural conversion have not been directly observed inside neurons. In this study, we tracked the intracellular conformational states of α-Syn using a single-molecule Förster resonance energy transfer (smFRET) biosensor, and we show here that α-Syn converts from a monomeric state into two distinct oligomeric states in neurons in a concentration-dependent and sequence-specific manner. Three-dimensional FRET-correlative light and electron microscopy (FRET-CLEM) revealed that intracellular seeding events occur preferentially on membrane surfaces, especially at mitochondrial membranes. The mitochondrial lipid cardiolipin triggers rapid oligomerization of A53T α-Syn, and cardiolipin is sequestered within aggregating lipid-protein complexes. Mitochondrial aggregates impair complex I activity and increase mitochondrial reactive oxygen species (ROS) generation, which accelerates the oligomerization of A53T α-Syn and causes permeabilization of mitochondrial membranes and cell death. These processes were also observed in induced pluripotent stem cell (iPSC)-derived neurons harboring A53T mutations from patients with PD. Our study highlights a mechanism of de novo α-Syn oligomerization at mitochondrial membranes and subsequent neuronal toxicity.


Assuntos
Doença de Parkinson , alfa-Sinucleína , Cardiolipinas/metabolismo , Humanos , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , alfa-Sinucleína/metabolismo
12.
Brain ; 145(10): 3622-3636, 2022 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-35858675

RESUMO

The protein alpha-synuclein is predominantly expressed in neurons and is associated with neurodegenerative diseases like Parkinson's disease and dementia with Lewy bodies. However, the normal function of alpha-synuclein in neurons is not clearly defined. We have previously shown that mice lacking alpha-synuclein expression exhibit markedly increased viral growth in the brain, increased mortality and increased neuronal cell death, implicating alpha-synuclein in the neuronal innate immune response. To investigate the mechanism of alpha-synuclein-induced immune responses to viral infections in the brain, we challenged alpha-synuclein knockout mice and human alpha-synuclein knockout dopaminergic neurons with RNA virus infection and discovered that alpha-synuclein is required for neuronal expression of interferon-stimulated genes. Furthermore, human alpha-synuclein knockout neurons treated with type 1 interferon failed to induce a broad range of interferon stimulated genes, implying that alpha-synuclein interacts with type 1 interferon signalling. We next found that alpha-synuclein accumulates in the nucleus of interferon-treated human neurons after interferon treatment and we demonstrated that interferon-mediated phosphorylation of STAT2 is dependent on alpha-synuclein expression in human neurons. Next, we found that activated STAT2 co-localizes with alpha-synuclein following type 1 interferon stimulation in neurons. Finally, we found that brain tissue from patients with viral encephalitis expresses increased levels of phospho-serine129 alpha-synuclein in neurons. Taken together, our results show that alpha-synuclein expression supports neuron-specific interferon responses by localizing to the nucleus, supporting STAT2 activation, co-localizing with phosphorylated STAT2 in neurons and supporting expression of interferon-stimulated genes. These data provide a novel mechanism that links interferon activation and alpha-synuclein function in neurons.


Assuntos
Encéfalo , Neurônios Dopaminérgicos , Interferons , alfa-Sinucleína , Animais , Humanos , Camundongos , alfa-Sinucleína/metabolismo , Encéfalo/metabolismo , Neurônios Dopaminérgicos/metabolismo , Interferons/metabolismo , Corpos de Lewy/metabolismo , Camundongos Knockout
13.
Front Cell Dev Biol ; 10: 898560, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35712660

RESUMO

α-Synuclein (αSyn) is a small, disordered protein that becomes aggregated in Lewy body diseases, such as Parkinson's disease (PD) and dementia with Lewy bodies (DLB). Human induced pluripotent stem cells (hiPSCs) potentially provide a tractable disease model to monitor early molecular changes associated with PD/DLB. We and others have previously derived hiPSC lines from patients with duplication and triplication of the SNCA gene, encoding for αSyn. It is now recognised that to perform meaningful disease modelling with these hiPSC lines, it is critical to generate isogenic control cell lines that lack the disease causing mutations. In order to complement the existing and emerging hiPSC models for PD/DLB, we have generated an allelic series of αSyn over-expressing hESC lines on the same isogenic background. An unresolved question is whether pluripotent stem cell lines, with elevated levels of αSyn, can undergo efficient differentiation into dopaminergic and cortical neurons to model PD and DLB, respectively. We took advantage of our isogenic collection of hESC lines to determine if increased expression of αSyn affects neural induction and neuronal differentiation. Clonal hESC lines with significantly different levels of αSyn expression proliferated normally and maintained expression of pluripotent markers, such as OCT4. All cell lines efficiently produced PAX6+ neuroectoderm and there was no correlation between αSyn expression and neural induction efficiency. Finally, global transcriptomic analysis of cortical differentiation of hESC lines with low or high levels of αSyn expression demonstrated robust and similar induction of cortical neuronal expression profiles. Gene expression differences observed were unrelated to neural induction and neuronal differentiation. We conclude that elevated expression of αSyn in human pluripotent stem cells does not adversely affect their neuronal differentiation potential and that collections of isogenic cell lines with differing levels of αSyn expression are valid and suitable models to investigate synucleinopathies.

14.
J Parkinsons Dis ; 12(6): 1881-1896, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35466951

RESUMO

BACKGROUND: First-in-human studies to test the efficacy and safety of human embryonic stem cells (hESC)-derived dopaminergic cells in the treatment of Parkinson's disease (PD) are imminent. Pre-clinical studies using hESC-derived dopamine neuron transplants in rat models have indicated that the benefits parallel those shown with fetal tissue but have thus far failed to consider how ongoing L-DOPA administration might impact on the graft. OBJECTIVE: To determine whether L-DOPA impacts on survival and functional recovery following grafting of hESC-derived dopaminergic neurons. METHODS: Unilateral 6-OHDA lesioned rats were administered with either saline or L-DOPA prior to, and for 18 weeks following surgical implantation of dopaminergic neural progenitors derived from RC17 hESCs according to two distinct protocols in independent laboratories. RESULTS: Grafts from both protocols elicited reduction in amphetamine-induced rotations. Reduced L-DOPA-induced dyskinesia preceded the improvement in amphetamine-induced rotations. Furthermore, L-DOPA had no effect on overall survival (HuNu) or dopaminergic neuron content of the graft (TH positive cells) but did lead to an increase in the number of GIRK2 positive neurons. CONCLUSION: Critically, we found that L-DOPA was not detrimental to graft function, potentially enhancing graft maturation and promoting an A9 phenotype. Early improvement of L-DOPA-induced dyskinesia suggests that grafts may support the handling of exogenously supplied dopamine earlier than improvements in amphetamine-induced behaviours indicate. Given that one of the protocols will be employed in the production of cells for the European STEM-PD clinical trial, this is vital information for the management of patients and achieving optimal outcomes following transplantation of hESC-derived grafts for PD.


Assuntos
Discinesia Induzida por Medicamentos , Células-Tronco Embrionárias Humanas , Doença de Parkinson , Anfetaminas/uso terapêutico , Animais , Antiparkinsonianos/uso terapêutico , Modelos Animais de Doenças , Dopamina , Discinesia Induzida por Medicamentos/tratamento farmacológico , Humanos , Levodopa/uso terapêutico , Oxidopamina/uso terapêutico , Oxidopamina/toxicidade , Doença de Parkinson/tratamento farmacológico , Ratos , Ratos Sprague-Dawley
15.
STAR Protoc ; 3(2): 101247, 2022 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-35391935

RESUMO

The neuroprotective E3-ubiquitin ligase CHIP is linked to healthy aging. Here, we present a protocol using a patient-derived iPSC line with a triplication of the α-synuclein gene to produce gene-edited cells isogenic for CHIP. We describe iPSC differentiation into cortical neurons and their identity validation. We then detail mass spectrometry-based approaches (SWATH-MS) to identify dominant changes in the steady state proteome generated by loss of CHIP function. This protocol can be adapted to other proteins that impact proteostasis in neurons. For complete details on the use and execution of this protocol, please refer to Dias et al. (2021).


Assuntos
Células-Tronco Pluripotentes Induzidas , Humanos , Espectrometria de Massas , Neurônios , Proteoma/genética , Proteômica/métodos
17.
Brain Commun ; 3(4): fcab223, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34632384

RESUMO

SNCA, the first gene associated with Parkinson's disease, encodes the α-synuclein protein, the predominant component within pathological inclusions termed Lewy bodies. The presence of Lewy bodies is one of the classical hallmarks found in the brain of patients with Parkinson's disease, and Lewy bodies have also been observed in patients with other synucleinopathies. However, the study of α-synuclein pathology in cells has relied largely on two-dimensional culture models, which typically lack the cellular diversity and complex spatial environment found in the brain. Here, to address this gap, we use three-dimensional midbrain organoids, differentiated from human-induced pluripotent stem cells derived from patients carrying a triplication of the SNCA gene and from CRISPR/Cas9 corrected isogenic control iPSCs. These human midbrain organoids recapitulate key features of α-synuclein pathology observed in the brains of patients with synucleinopathies. In particular, we find that SNCA triplication human midbrain organoids express elevated levels of α-synuclein and exhibit an age-dependent increase in α-synuclein aggregation, manifested by the presence of both oligomeric and phosphorylated forms of α-synuclein. These phosphorylated α-synuclein aggregates were found in both neurons and glial cells and their time-dependent accumulation correlated with a selective reduction in dopaminergic neuron numbers. Thus, human midbrain organoids from patients carrying SNCA gene multiplication can reliably model key pathological features of Parkinson's disease and provide a powerful system to study the pathogenesis of synucleinopathies.

18.
iScience ; 24(8): 102878, 2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34401662

RESUMO

CHIP is an E3-ubiquitin ligase that contributes to healthy aging and has been characterized as neuroprotective. To elucidate dominant CHIP-dependent changes in protein steady-state levels in a patient-derived human neuronal model, CHIP function was ablated using gene-editing and an unbiased proteomic analysis conducted to compare knock-out and wild-type isogenic induced pluripotent stem cell (iPSC)-derived cortical neurons. Rather than a broad effect on protein homeostasis, loss of CHIP function impacted on a focused cohort of proteins from actin cytoskeleton signaling and membrane integrity networks. In support of the proteomics, CHIP knockout cells had enhanced sensitivity to induced membrane damage. We conclude that the major readout of CHIP function in cortical neurons derived from iPSC of a patient with elevate α-synuclein, Parkinson's disease and dementia, is the modulation of substrates involved in maintaining cellular "health". Thus, regulation of the actin cytoskeletal and membrane integrity likely contributes to the neuroprotective function(s) of CHIP.

19.
Nat Commun ; 12(1): 1592, 2021 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-33707447

RESUMO

Parkinson's disease (PD) is a progressive neurodegenerative disorder, which is characterised by degeneration of distinct neuronal populations, including dopaminergic neurons of the substantia nigra. Here, we use a metabolomics profiling approach to identify changes to lipids in PD observed in sebum, a non-invasively available biofluid. We used liquid chromatography-mass spectrometry (LC-MS) to analyse 274 samples from participants (80 drug naïve PD, 138 medicated PD and 56 well matched control subjects) and detected metabolites that could predict PD phenotype. Pathway enrichment analysis shows alterations in lipid metabolism related to the carnitine shuttle, sphingolipid metabolism, arachidonic acid metabolism and fatty acid biosynthesis. This study shows sebum can be used to identify potential biomarkers for PD.


Assuntos
Metabolismo dos Lipídeos/fisiologia , Lipídeos/análise , Doença de Parkinson/patologia , Sebo/metabolismo , Idoso , Ácido Araquidônico/metabolismo , Biomarcadores/análise , Carnitina/metabolismo , Cromatografia Líquida , Ácidos Graxos/biossíntese , Feminino , Humanos , Masculino , Espectrometria de Massas , Metabolômica/métodos , Pessoa de Meia-Idade , Esfingolipídeos/metabolismo
20.
ACS Cent Sci ; 7(2): 300-306, 2021 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-33655068

RESUMO

Parkinson's disease (PD) is a progressive neurodegenerative disorder that does not currently have a robust clinical diagnostic test. Nonmotor symptoms such as skin disorders have long since been associated with the disease, and more recently a characteristic odor emanating from the skin of people with Parkinson's has been identified. Here, dynamic head space (DHS) thermal desorption (TD) gas chromatography-mass spectrometry (GC-MS) is implemented to directly measure the volatile components of sebum on swabs sampled from people with Parkinson's-both drug naïve and those on PD medications (n = 100) and control subjects (n = 29). Supervised multivariate analyses of data showed 84.4% correct classification of PD cases using all detected volatile compounds. Variable importance in projection (VIP) scores were generated from these data, which revealed eight features with VIP > 1 and p < 0.05 which all presented a downregulation within the control cohorts. Purified standards based on previously annotated analytes of interest eicosane and octadecanal did not match to patient sample data, although multiple metabolite features are annotated with these compounds all with high spectral matches indicating the presence of a series of similar structured species. DHS-TD-GC-MS analysis of a range of lipid standards has revealed the presence of common hydrocarbon species rather than differentiated intact compounds which are hypothesized to be breakdown products of lipids. This replication study validates that a differential volatile profile between control and PD cohorts can be measured using an analytical method that measures volatile compounds directly from skin swabs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...