Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Photodiagnosis Photodyn Ther ; 43: 103711, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37459940

RESUMO

BACKGROUND: The chorioallantoic membrane (CAM) of the Japanese quail is an excellent model for studying photodynamic therapy (PDT) due to its rich vascularization. PDT is used not only in oncological treatment but also in infectious diseases, or psoriasis, where it yields significant advantages. This treatment also has its limitations, such as burning, itching, erythema, redness, swelling, and delayed wound healing. The aim of this study was to analyse the potentially protective properties of the tissue hormone leptin during PDT. METHODS: Japanese quail embryos incubated ex ovo were used in this experiment. On the 9th day of embryonic development, leptin (5 µg) and photosensitiser hypericin (79 µM) were topically applied, followed by irradiation. The effect of leptin co-administration was evaluated from CAM images and histological structure analysis, histological samples, and qPCR, where the expression of genes involved in angiogenesis, apoptosis, and oxidative stress was monitored. RESULTS: We observed vascular damage in all experimental groups, the highest damage was found after the application of hypericin without leptin coadministration. Histological analysis confirmed the protective effect of leptin. qPCR analysis presented differences in FREK gene expression, but also in genes involved in oxidative stress like SOD, NRF-1, NRF-2, and GPX7. The application of leptin significantly reduced the expression of apoptosis regulatory proteins CASP3, cytochrome C, and APAF1. CONCLUSIONS: Our results in the CAM model suggest a possible protective effect of leptin to prevent PDT damage and aid in the subsequent regeneration of target tissues after antimicrobial PDT.


Assuntos
Perileno , Fotoquimioterapia , Animais , Fármacos Fotossensibilizantes/farmacologia , Fotoquimioterapia/métodos , Codorniz , Membrana Corioalantoide/metabolismo , Leptina/farmacologia , Leptina/metabolismo , Coturnix
2.
Pharmaceutics ; 14(12)2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36559069

RESUMO

Due to the simple one-step preparation method and a promising application in biomedical research, amphiphilic gradient copoly(2-oxazoline)s are gaining more and more interest compared to their analogous block copolymers. In this work, the curcumin solubilization ability was tested for a series of amphiphilic gradient copoly(2-oxazoline)s with different lengths of hydrophobic side-chains, consisting of 2-ethyl-2-oxazoline as a hydrophilic monomer and 2-(4-alkyloxyphenyl)-2-oxazoline as a hydrophobic monomer. It is shown that the length of the hydrophobic side-chain in the copolymers plays a crucial role in the loading of curcumin onto the self-assembled nanoparticles. The kinetic stability of self-assembled nanoparticles studied using FRET shows a link between their integrity and cellular uptake in human glioblastoma cells. The present study demonstrates how minor changes in the molecular structure of gradient copoly(2-oxazoline)s can lead to significant differences in the loading, stability, cytotoxicity, cellular uptake, and pharmacokinetics of nano-formulations containing curcumin. The obtained results on the behavior of the complex of gradient copoly(2-oxazoline)s and curcumin may contribute to the development of effective next-generation polymeric nanostructures for biomedical applications.

3.
Photodiagnosis Photodyn Ther ; 40: 103046, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35917905

RESUMO

Amphiphilic gradient copoly(2-oxazoline)s are widely researched in the field of drug delivery. They could be used as a transport system for hydrophobic drugs such as hypericin (HYP). We prepared six gradient copolymers (EtOx)-grad-(ROPhOx) by living cationic ring-opening polymerization of a hydrophilic comonomer 2-ethyl-2-oxazoline (EtOx) and a hydrophobic comonomer 2-(4-alkyloxyphenyl)-2-oxazoline (ROPhOx), with different composition ratio (88:12 and 85:15) and three different alkyl chain lengths of alkyl (R) substituents. As an experimental model, Japanese quail chorioallantoic membrane (CAM) was used. The effect of nanoparticles loaded with HYP was evaluated by the changes of fluorescence intensity during photodynamic diagnosis (PDD) monitored under 405 nm LED light before administration, and 0,1,3 and 24 h after topical administration. The effectiveness of photodynamic therapy (PDT) (405 nm, 285 mW/cm2) applied 1h after the administration of HYP-loaded nanoparticles was evaluated using vascular damage score and histological sections. Molecular analysis was done by measuring angiogenesis-related gene expression by qPCR. The application of nanoparticles unloaded or loaded with HYP proved to be biocompatible, non-toxic, and undamaging to the CAM tissue, while they successfully altered the HYP fluorescence. We observed a possible anti-angiogenic potential of prepared nanoparticles, which could present an advantage for PDT used for tumour treatment.


Assuntos
Perileno , Fotoquimioterapia , Animais , Membrana Corioalantoide/metabolismo , Fotoquimioterapia/métodos , Coturnix/metabolismo , Sistemas de Liberação de Medicamentos , Fármacos Fotossensibilizantes
4.
J Vis Exp ; (182)2022 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-35575515

RESUMO

The chorioallantoic membrane (CAM) of an avian embryo is a thin, extraembryonic membrane that functions as a primary respiratory organ. Its properties make it an excellent in vivo experimental model to study angiogenesis, tumor growth, drug delivery systems, or photodynamic diagnosis (PDD) and photodynamic therapy (PDT). At the same time, this model addresses the requirement for the replacement of experimental animals with a suitable alternative. Ex ovo cultivated embryo allows easy substance application, access, monitoring, and documentation. The most frequently used is chick CAM; however, this article describes the advantages of the Japanese quail CAM as a low-cost and high-throughput model. Another advantage is the shorter embryonic development, which allows higher experimental turnover. The suitability of quail CAM for PDD and PDT of cancer and microbial infections is explored here. As an example, the use of the photosensitizer hypericin in combination with lipoproteins or nanoparticles as a delivery system is described. The damage score from images in white light and changes in fluorescence intensity of the CAM tissue under violet light (405 nm) was determined, together with analysis of histological sections. The quail CAM clearly showed the effect of PDT on the vasculature and tissue. Moreover, changes like capillary hemorrhage, thrombosis, lysis of small vessels, and bleeding of larger vessels could be observed. Japanese quail CAM is a promising in vivo model for photodynamic diagnosis and therapy research, with applications in studies of tumor angiogenesis, as well as antivascular and antimicrobial therapy.


Assuntos
Neoplasias , Fotoquimioterapia , Animais , Membrana Corioalantoide/patologia , Coturnix , Neoplasias/diagnóstico , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Neovascularização Patológica/patologia , Fotoquimioterapia/métodos , Codorniz
5.
Biomacromolecules ; 22(10): 4199-4216, 2021 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-34494830

RESUMO

Self-assembled nanostructures of amphiphilic gradient copoly(2-oxazoline)s have recently attracted attention as promising delivery systems for the effective delivery of hydrophobic anticancer drugs. In this study, we have investigated the effects of increasing hydrophobic side chain length on the self-assembly of gradient copolymers composed of 2-ethyl-2-oxazoline as the hydrophilic comonomer and various 2-(4-alkyloxyphenyl)-2-oxazolines as hydrophobic comonomers. We show that the size of the formed polymeric nanoparticles depends on the structure of the copolymers. Moreover, the stability and properties of the polymeric assembly can be affected by the loading of hypericin, a promising compound for photodiagnostics and photodynamic therapy (PDT). We have found the limitation that allows rapid or late release of hypericin from polymeric nanoparticles. The nanoparticles entering the cells by endocytosis decreased the hypericin-induced PDT, and the contribution of the passive process (diffusion) increased the probability of a stronger photoeffect. A study of fluorescence pharmacokinetics and biodistribution revealed differences in the release of hypericin from nanoparticles toward the quail chorioallantoic membrane, a preclinical model for in vivo studies, depending on the composition of polymeric nanoparticles. Photodamage induced by PDT in vivo well correlated with the in vitro results. All formulations studied succeeded in targeting hypericin at cancer cells. In conclusion, we demonstrated the promising potential of poly(2-oxazoline)-based gradient copolymers for effective drug delivery and sequential drug release needed for successful photodiagnostics and PDT in cancer therapy.


Assuntos
Nanopartículas , Fotoquimioterapia , Antracenos , Oxazóis , Perileno/análogos & derivados , Fármacos Fotossensibilizantes/farmacologia , Polímeros , Distribuição Tecidual
6.
Biology (Basel) ; 10(4)2021 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-33917385

RESUMO

The chorioallantoic membrane model (CAM) of an avian embryo is used as an experimental model in various fields of research, including angiogenesis research and drug testing, xenografting and cancer research, and other scientific and commercial disciplines in microbiology, biochemistry, cosmetics, etc. It is a low-cost, low-maintenance, and well-available in vivo animal model that is non-sentient and can be used as an alternative for other mammal experimental models. It respects the principles of the "3R" rule (Replacement, Reduction, and Refinement)-conditions set out for scientific community providing an essential framework for conducting a more human animal research, which is also in line with constantly raising public awareness of welfare and the ethics related to the use of animal experimental models. In this review, we describe the chorioallantoic membrane of an avian embryo, focusing on its properties and development, its advantages and disadvantages as an experimental model, and the possibilities of its application in various fields of biological research. Since the most common chicken CAM model is already well known and described in many publications, we are particularly focusing on the advantages and application of less known avian species that are used for the CAM model-quail, turkey, and duck.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...