Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nanotechnology ; 33(34)2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35487195

RESUMO

Plasma technology is actively used for nanoparticle synthesis and modification. All plasma techniques share the ambition of providing high quality, nanostructured materials with full control over their crystalline state and functional properties. Pulsed-DC physical/chemical vapour deposition, high power impulse magnetron sputtering, and pulsed cathodic arc are consolidated low-temperature plasma processes for the synthesis of high-quality nanocomposite films in vacuum environment. However, atmospheric arc discharge stands out thanks to the high throughput, wide variety, and excellent quality of obtained stand-alone nanomaterials, mainly core-shell nanoparticles, transition metal dichalcogenide monolayers, and carbon-based nanostructures, like graphene and carbon nanotubes. Unique capabilities of this arc technique are due to its flexibility and wide range of plasma parameters achievable by modulation of the frequency, duty cycle, and amplitude of pulse waveform. The many possibilities offered by pulsed arc discharges applied on synthesis of low-dimensional materials are reviewed here. Periodical variations in temperature and density of the pulsing arc plasma enable nanosynthesis with a more rational use of the supplied power. Parameters such as plasma composition, consumed power, process stability, material properties, and economical aspects, are discussed. Finally, a brief outlook towards future tendencies of nanomaterial preparation is proposed. Atmospheric pulsed arcs constitute promising, clean processes providing ecological and sustainable development in the production of nanomaterials both in industry and research laboratories.

2.
Rev Sci Instrum ; 87(2): 02B142, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26932024

RESUMO

Rf-driven ion sources for accelerators and many industrial applications benefit from detailed numerical modeling and simulation of plasma characteristics. For instance, modeling of the Spallation Neutron Source (SNS) internal antenna H(-) source has indicated that a large plasma velocity is induced near bends in the antenna where structural failures are often observed. This could lead to improved designs and ion source performance based on simulation and modeling. However, there are significant separations of time and spatial scales inherent to Rf-driven plasma ion sources, which makes it difficult to model ion sources with explicit, kinetic Particle-In-Cell (PIC) simulation codes. In particular, if both electron and ion motions are to be explicitly modeled, then the simulation time step must be very small, and total simulation times must be large enough to capture the evolution of the plasma ions, as well as extending over many Rf periods. Additional physics processes such as plasma chemistry and surface effects such as secondary electron emission increase the computational requirements in such a way that even fully parallel explicit PIC models cannot be used. One alternative method is to develop fluid-based codes coupled with electromagnetics in order to model ion sources. Time-domain fluid models can simulate plasma evolution, plasma chemistry, and surface physics models with reasonable computational resources by not explicitly resolving electron motions, which thereby leads to an increase in the time step. This is achieved by solving fluid motions coupled with electromagnetics using reduced-physics models, such as single-temperature magnetohydrodynamics (MHD), extended, gas dynamic, and Hall MHD, and two-fluid MHD models. We show recent results on modeling the internal antenna H(-) ion source for the SNS at Oak Ridge National Laboratory using the fluid plasma modeling code USim. We compare demonstrate plasma temperature equilibration in two-temperature MHD models for the SNS source and present simulation results demonstrating plasma evolution over many Rf periods for different plasma temperatures. We perform the calculations in parallel, on unstructured meshes, using finite-volume solvers in order to obtain results in reasonable time.

3.
J Vis Exp ; (60)2012 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-22330847

RESUMO

Carbon nanostructures such as single-walled carbon nanotubes (SWCNT) and graphene attract a deluge of interest of scholars nowadays due to their very promising application for molecular sensors, field effect transistor and super thin and flexible electronic devices(1-4). Anodic arc discharge supported by the erosion of the anode material is one of the most practical and efficient methods, which can provide specific non-equilibrium processes and a high influx of carbon material to the developing structures at relatively higher temperature, and consequently the as-synthesized products have few structural defects and better crystallinity. To further improve the controllability and flexibility of the synthesis of carbon nanostructures in arc discharge, magnetic fields can be applied during the synthesis process according to the strong magnetic responses of arc plasmas. It was demonstrated that the magnetically-enhanced arc discharge can increase the average length of SWCNT (5), narrow the diameter distribution of metallic catalyst particles and carbon nanotubes (6), and change the ratio of metallic and semiconducting carbon nanotubes (7), as well as lead to graphene synthesis (8). Furthermore, it is worthwhile to remark that when we introduce a non-uniform magnetic field with the component normal to the current in arc, the Lorentz force along the J×B direction can generate the plasmas jet and make effective delivery of carbon ion particles and heat flux to samples. As a result, large-scale graphene flakes and high-purity single-walled carbon nanotubes were simultaneously generated by such new magnetically-enhanced anodic arc method. Arc imaging, scanning electron microscope (SEM), transmission electron microscope (TEM) and Raman spectroscopy were employed to analyze the characterization of carbon nanostructures. These findings indicate a wide spectrum of opportunities to manipulate with the properties of nanostructures produced in plasmas by means of controlling the arc conditions.


Assuntos
Grafite/química , Magnetismo/métodos , Nanotubos de Carbono/química , Grafite/síntese química , Microscopia Eletrônica de Varredura , Gases em Plasma , Análise Espectral Raman
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA