Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
ACS Omega ; 4(9): 14074-14084, 2019 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-31497726

RESUMO

Two novel polyesterurethane materials, PEU1 and PEU2, were synthesized via nontoxic and isocyanate-free route by simple conversion of two epoxides 1,2-epoxy-3-phenoxy propane (2) and styrene epoxide (3) utilizing CO2. Epoxides 2 and 3 were converted to the respective cyclic carbonates 4 and 5 by a new set of cobalt-based catalyst 1a in the presence of 10 bar of CO2 and 80 °C temperature without using cocatalyst tetrabutylammonium bromide (TBAB). The mechanistic pathway of the catalysis reaction for the cycloaddition of epoxides with CO2 to generate the cyclic carbonates was investigated by several spectroscopic techniques and utilizing analogous zinc-based 1D coordination polymer 1b, which does not act as an efficient catalyst in the absence of TBAB. Cyclic carbonates 4 and 5 were converted to the respective polyesterurethanes PEU1 and PEU2 sequentially by first synthesizing the ring-opened diols 6 and 7 reacting with ethylenediamine and subsequently annealing the respective diols 6 and 7 at 120 °C in the presence of terepthalyl chloride and triethylamine. The polyesterurethanes PEU1 and PEU2 were characterized by multinuclear NMR and FTIR. PEU1 was also characterized by MALDI-TOF mass spectrometry. The thermal studies of PEU1 and PEU2 showed the stability up to 200-270 °C. The number-average and weight-average molecular weights were determined for PEU1 and PEU2 by GPC analysis. The weight-average molecular weight for PEU1 was found to be 5948 with a polydispersity of 1.1, and PEU2 showed the weight-average molecular weight as 4224 with a polydispersity of 1.06.

3.
ACS Omega ; 4(3): 5221-5232, 2019 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-31459694

RESUMO

Three new multicomponent crystals 1a-1c of Zn(II), Mn(II), and Co(II), respectively, were synthesized by the reaction of 2,6-bis(hydroxymethyl)pyridine, the respective metal salts, and sodium benzoate in a 1:1:2 ratio. One component of these multicomponent crystals 1a-1c is the dicationic 2,6-bis(hydroxymethyl)pyridine metal complex and the other component is the dianionic tetrabenzoate complex of the same metal. The complexes were fully characterized by single-crystal X-ray structure determination. The X-ray structure of these compounds 1a-1c reveals the formation of 1D supramolecular chain parallel to the crystallographic b axis via H-bonding interactions between the dicationic and dianionic parts of the respective compound. The Mn(II) (1b) and Co(II) (1c) complexes show antiferromagnetic coupling between the two associated metal centers via the H-bonding interaction pathway. All the three compounds 1a-1c were tested as heterogeneous catalytic systems for the successful conversion of epoxides to cyclic carbonates in solvent-free condition under approximately 10 bar of pressure of CO2 and temperature ranging between 60 and 80 °C along with tetrabutyl ammonium bromide acting as a cocatalyst. All the three compounds 1a-1c were found to have turnover number more than 1000 for the respective epoxides except for the conversion of cyclohexene oxide to cyclohexene carbonate.

4.
Angew Chem Int Ed Engl ; 58(35): 12059-12064, 2019 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-31209956

RESUMO

The preparation of multinuclear metal complexes offers a route to novel anticancer agents and delivery systems. The potency of a novel triangular multinuclear complex containing three platinum atoms, Pt-3, towards breast cancer stem cells (CSCs) is reported. The trinuclear platinum(II) complex, Pt-3 exhibits selective toxicity towards breast CSCs over bulk breast cancer cells and non-tumorigenic breast cells. Remarkably, Pt-3 inhibits the formation, size, and viability of mammospheres to a better extent than salinomycin, an established CSC-potent agent, and cisplatin and carboplatin, clinically used platinum drugs. Mechanism of action studies show that Pt-3 effectively enters breast CSCs, penetrates the nucleus, induces genomic DNA damage, and prompts caspase-dependent apoptosis. To the best of our knowledge, Pt-3 is the first multinuclear platinum complex to selectively kill breast CSCs over other breast cell types.


Assuntos
Apoptose/efeitos dos fármacos , Complexos de Coordenação/farmacologia , Platina/química , Antineoplásicos/química , Antineoplásicos/farmacologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Caderinas/antagonistas & inibidores , Caderinas/genética , Caderinas/metabolismo , Carboplatina/farmacologia , Caspases/metabolismo , Linhagem Celular Tumoral , Cisplatino/farmacologia , Complexos de Coordenação/química , Cristalografia por Raios X , Feminino , Humanos , Conformação Molecular , Células-Tronco Neoplásicas/citologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Piranos/farmacologia , Interferência de RNA , RNA Interferente Pequeno/metabolismo
5.
Dalton Trans ; 47(16): 5755-5763, 2018 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-29634060

RESUMO

We report the synthesis and characterisation of mono- and di-nuclear cobalt(ii) complexes (1-3) containing L1, a polypyridyl ligand with pyrazole moieties. DNA binding studies suggest that the mono-nuclear complex, 1, binds to DNA via the grooves prior to inducing oxidative DNA cleavage whereas the larger di-nuclear complexes, 2 and 3, bind to DNA via the grooves and through intercalation prior to inducing oxidative DNA cleavage. The cobalt(ii) complexes display micromolar potency towards U2OS (bone osteosarcoma), HepG2 (liver hepatocellular carcinoma), and GM05757 (normal human fibroblast) cells, comparable to clinically used platinum agents, cisplatin and carboplatin. The cellular mechanism of action studies show that the most effective cobalt(ii) complex, 2, enters U2OS cells, penetrates the nucleus, induces genomic DNA damage, and triggers caspase-dependent apoptosis in a p53-independent manner. This study highlights the potential of di-nuclear cobalt(ii) complexes as artificial oxidative metallonucleases and tangible cancer cell-potent agents.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...