Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 924: 171453, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38453089

RESUMO

Recycling e-waste is seen as a sustainable alternative to compensate for the limited natural rare earth elements (REEs) resources and the difficulty of accessing these resources. Recycling facilitates the recovery of valuable products and minimizes emissions during their transportation. Numerous studies have been reported on e-waste recycling using various techniques, including thermo-, hydro- and biometallurgical approaches. However, each approach still has technical, economic, social, or environmental limitations. This review highlights the potential of recycling e-waste, including outlining the current unutilized potential of REE recycling from different e-waste components. An in-depth analysis of e-waste generation on a global scale and Australian scenario, along with various hazardous impacts on ecosystem and human health, is reported. In addition, a comprehensive summary of various metal recovery processes and their merits and demerits is also presented. Lifecycle analysis for recovering REEs from e-waste indicate a positive environmental impact when compared to REEs produced from virgin sources. In addition, recovering REEs form secondary sources eliminated ca. 1.5 times radioactive waste, as seen in production from primary sources scenario. The review outcome demonstrates the increasing potential of REE recycling to overcome critical challenges, including issues over supply security and localized dependency.

2.
Sci Rep ; 11(1): 11183, 2021 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-34045559

RESUMO

Lignocellulosic biomass is an attractive renewable resource to produce biofuel or platform chemicals. Efficient and cost-effective conversion systems of lignocellulosic biomass depend on their appropriate pretreatment processes. Alkali or dilute acid pretreatment of biomass requires a high temperature (> 150 °C) to remove xylan (hemicellulosic sugar) and lignin partially. In this study, peracetic acid was used to pretreat biomass feedstocks, including hardwood and softwood species. It was found that the thermally-assisted dilute acid pretreatment of biomass conducted under the mild temperature of 90 °C up to 5 h resulted in the effective removal of lignin from the biomass with a negligible loss of carbohydrates. This thermally-assisted pretreatment achieved 90% of delignification, and this result was compared with the microwave-assisted pretreatment method. In addition, the crystallinity index (CrI), surface morphology, and chemical structure were significantly changed after the acid pretreatment. The biomass digestibility increased significantly with increased reaction time, by 32% and 23% for hardwood and softwood, respectively. From this study, it is clear that peracetic acid pretreatment is an effective method to enrich glucan content in biomass by delignification.

3.
Bioresour Technol ; 208: 170-177, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26943934

RESUMO

Electrodialysis (ED) was used to develop a multistage oxalic acid recovery and pretreatment system to produce ethanol from deacetylated yellow poplar. Pretreatment of the biomass was performed at 150°C for 42 min using 0.16 M oxalic acid. The efficiency of oxalic acid recovery from the hydrolysate reached up to 92.32% in all the stages. Ethanol production and ethanol yield of ED-treated hydrolysate in each stage showed a uniform pattern ranging from 6.81 g/L to 7.21 g/L and 0.40 g/g to 0.43 g/g, respectively. The results showed that efficiency of ethanol production increased when deacetylated biomass and ED process was used. Ethanol yield from the pretreated biomass using simultaneous saccharification and fermentation (SSF) was in the range of 80.59-83.36% in all the stages. The structural characterization of the pretreated biomass at each stage was investigated and structural changes were not significantly different among the various pretreated biomass.


Assuntos
Etanol/isolamento & purificação , Liriodendron/química , Ácido Oxálico/química , Acetilação , Biomassa , Diálise/métodos , Etanol/química , Fermentação , Hidrólise , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
4.
Bioresour Technol ; 178: 28-35, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25205056

RESUMO

In order to produce ethanol from yellow poplar, deacetylation was performed using sodium hydroxide (NaOH). Optimal deacetylation conditions were determined by a response surface methodology. The highest acetic acid concentration obtained was 7.06 g/L when deacetylation was performed at 60 °C for 80 min with 0.8% NaOH. Acetic acid was recovered by electrodialysis from the deacetylated hydrolysate. The oxalic acid pretreatment of deacetylated biomass was carried out and the hydrolysate directly used for ethanol production without detoxification. Ethanol yields ranged from 0.34 to 0.47 g/g and the highest ethanol yield was obtained when pretreatment was carried out at 150 °C with 50 mM oxalic acid. The highest ethanol concentration obtained from pretreated biomass was 27.21 g/L at 170 °C, using a 50 mM of oxalic acid for the simultaneous saccharification and fermentation (SSF). Overall, 20.31 g of ethanol was obtained by hydrolysate and SSF from 100 g of deacetylated yellow poplar.


Assuntos
Biocombustíveis , Biotecnologia/métodos , Etanol/química , Ácido Oxálico/química , Ácido Acético/química , Biomassa , Carboidratos/química , Diálise , Eletroquímica/métodos , Fermentação , Glucanos/química , Hidrólise , Pichia , Populus/química , Propriedades de Superfície , Temperatura , Árvores , Xilanos/química
5.
Bioresour Technol ; 161: 280-7, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24713602

RESUMO

An integrated detoxification process with electrodialysis (ED) followed by adsorption was performed to remove fermentation inhibitors from hemicellulose hydrolysates. The hydrolysates were prepared by oxalic acid pretreatment of yellow poplars at different temperatures. Of fermentation inhibitors, acetic acid showed high removal efficiency of about 90% and high transport rate during the ED process without membrane fouling. The integration of the detoxification processes increased up to the ethanol yield of 0.33g/g sugar, the ethanol production of about 9g/L, and the productivity of 0.12g/Lh, while the fermentation of non-detoxified hydrolysates did not produce bioethanol. The influence of inhibitor concentration on the fermentability showed that HMF had the highest inhibition effect. The results clearly showed that an integrated detoxification process with ED followed by adsorption removed fermentation inhibitors with high efficiency and increased the fermentability of the oxalic acid pretreated hemicellulose hydrolysates.


Assuntos
Biocombustíveis , Técnicas Eletroquímicas , Liriodendron/química , Polissacarídeos/química , Adsorção , Fermentação , Hidrólise , Ácido Oxálico , Madeira/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...