Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ultrasonics ; 142: 107357, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38838609

RESUMO

Composite laminates are widely used in various fields, but their structures are prone to cracks and damage. Due to the difference in angles of the instantaneous direction of the wave front propagation and the direction of the energy flow in an anisotropic material, the use of Lamb waves for damage localization in composite laminates is a challenging task. Establishing the wave front shape equation can overcome the difficulty of damage localization caused by anisotropy, but this usually requires a priori knowledge of the acoustic velocity distribution of the laminates, which is not convenient for efficient damage localization. In this paper, a damage localization method based on wave front shapes for composite laminates without any knowledge of the velocity profile is presented. Numerical simulation and experimental results show that the proposed method works. This method shows good damage localization accuracy and has broad application prospects in non-destructive testing for plate structures with strong anisotropy.

2.
Ultrasonics ; 141: 107335, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38692212

RESUMO

Aluminum structures are routinely used in aircraft due to their lightweight and corrosion resistance properties. Multi-layered aluminum plates are generally joined by rivets forming regions which are prone to fatigue crack formation in an aircraft. Therefore, the detection and monitoring of fatigue cracks at rivet joints in aluminum structures are crucial for ensuring flight safety. In this study, piezoelectric sensors were utilized to generate and detect Lamb waves on aluminum plates with rivet joints to investigate the feasibility of a newly developed Sideband Peak Count (SPC) technique for detecting fatigue cracks around these joints. To overcome the limitations of existing SPC-I (Sideband Peak Count - Index) and SPI (Sideband Peak Intensity) techniques in capturing harmonic and modulating wave frequencies due to material nonlinearity, a comprehensive index, the Sideband Intensity Index (SII) is introduced. Comparative analysis with existing SPC-I and SPI techniques confirm the effectiveness of the SII technique. This investigation shows that the SII technique significantly improves the detection capability of initial fatigue cracks around rivet joints on aluminum plates. This study offers a more efficient method for detecting critical fatigue cracks in rivet joints.

3.
Ultrasonics ; 141: 107354, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38795521

RESUMO

Some topographies in plate structures can hide cracks and make it difficult to monitor damage growth. This is because topographical features convert homogeneous structures to heterogeneous one and complicate the wave propagation through such structures. At certain points destructive interference between incident, reflected and transmitted elastic waves can make those points insensitive to the damage growth when adopting acoustics based structural health monitoring (SHM) techniques. A newly developed nonlinear ultrasonic (NLU) technique called sideband peak count - index (or SPC-I) has shown its effectiveness and superiority compared to other techniques for nondestructive testing (NDT) and SHM applications and is adopted in this work for monitoring damage growth in plate structures with topographical features. The performance of SPC-I technique in heterogeneous specimens having different topographies is investigated using nonlocal peridynamics based peri-ultrasound modeling. Three types of topographies - "X" topography, "Y" topography and "XY" topography are investigated. It is observed that "X" and "XY" topographies can help to hide the crack growth, thus making cracks undetectable when the SPC-I based monitoring technique is adopted. In addition to the SPC-I technique, we also investigate the effectiveness of an emerging sensing technique based on topological acoustic sensing. This method monitors the changes in the geometric phase; a measure of the changes in the acoustic wave's spatial behavior. The computed results show that changes in the geometric phase can be exploited to monitor the damage growth in plate structures for all three topographies considered here. The significant changes in geometric phase can be related to the crack growth even when these cracks remain hidden for some topographies during the SPC-I based single point inspection. Sensitivities of both the SPC-I and the topological acoustic sensing techniques are also investigated for sensing the topographical changes in the plate structures.

4.
Ultrasonics ; 138: 107259, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38335920

RESUMO

A newly developed nonlinear ultrasonic (NLU) technique called sideband band peak count-index (or SPC-I) measures the degree of nonlinearity in materials by counting the sideband peaks above a moving threshold line - larger the SPC-I values, higher is the material nonlinearity. In various published papers, the SPC-I technique has shown its effectiveness in structural health monitoring (SHM) applications. However, the effects of different types of nonlinear phenomenon on the sideband peak generation is yet to be investigated in depth. This work addresses this knowledge gap and investigates the effects of different types of nonlinearity on the SPC-I technique. Three types of nonlinearity (material nonlinearity, structural nonlinearity and contact nonlinearity) are investigated separately through numerical modeling. In this investigation the material nonlinearity and the contact nonlinearity are modeled by finite element method (FEM) using the commercial Abaqus/CAE software. The structural nonlinearity arising from stationary cracks is modeled using nonlocal peridynamics based peri-ultrasound modeling technique. Numerical modeling shows that the sideband peak values do not increase proportional to the input signal strength thus indicating nonlinear response, and different types of nonlinearities affect the SPC-I measurements differently. For the experimental verification a composite plate with impact-induced damage is considered for investigating the material nonlinearity and structural nonlinearity while a linear elastic aluminum plate is used to examine the contact nonlinearity between the transducers and the plate. The trends observed in the experimental observations matched with the numerical model predictions.

5.
Ultrasonics ; 133: 107028, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37178484

RESUMO

Since it is almost impossible to carry out a comprehensive parametric investigation experimentally for internal cracks with different geometry and orientation, a good numerical modeling and simulation technique is necessary to have a clear understanding of the physics of wave propagation and its interaction with cracks. Such investigation is helpful for structural health monitoring (SHM) with ultrasonic techniques. This work presents a nonlocal peri-ultrasound theory based on ordinary state-based (OSB) peridynamics for modeling elastic wave propagation in three-dimensional (3-D) plate structures containing multiple cracks. A relatively new and promising nonlinear ultrasonic technique called Sideband Peak Count - Index (or SPC-I) is adopted to extract the nonlinearity generated from the interactions between elastic waves and multiple cracks. Effects of three main parameters - the distance between the acoustic source and the crack, the crack spacing and the number of cracks are investigated using the proposed OSB peri-ultrasound theory together with the SPC-I technique. For each of these three parameters investigation, different crack thicknesses were considered - 0 mm (crack-free), 1 mm (thin crack), 2 mm (intermediate thickness) and 4 mm (thick crack); thin and thick cracks are defined after comparing the crack thickness value with the horizon size mentioned in the peri-ultrasound theory. It is found that for obtaining consistent results the acoustic source should be placed at least one wavelength away from the crack and crack spacings also play an important role on the nonlinear response. It is concluded that the nonlinear response diminishes when the cracks become too thick, and thin cracks show higher nonlinearity than that of thick cracks and no cracks. Finally, the proposed method which is combining the peri-ultrasound theory and SPC-I technique is used for monitoring cracks' evolution process. The numerical modeling results are compared with the experimental findings reported in the literature. Consistent qualitative trends in SPC-I variations predicted numerically and obtained experimentally are observed, thus it gives confidence in the proposed method.

6.
Ultrasonics ; 132: 107020, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37116398

RESUMO

Acoustic source localization (ASL) plays an important role in structural health monitoring (SHM). The L-shaped sensor cluster (LSSC) is very convenient for ASL, and hence SHM. Various techniques based on LSSC have been developed rapidly in the past decade. LSSC can be conveniently used for damage detection and localization, a necessary step for monitoring structures through non-destructive testing (NDT). After ten years of development, LSSC still has a wide development space. In this paper, the fundamental roles of LSSC in developing different techniques within last ten years and its future potentials are discussed. The LSSC-based time difference of arrival localization techniques and the wave front shape-based localization techniques are reviewed in detail in this paper. This paper aims to give readers a more comprehensive and clear understanding of these techniques. The discussion on the advantages and disadvantages of these techniques and various sources of the errors will give the readers the current limitations and future development prospects of ASL and damage detection techniques using LSSC.

7.
Ultrasonics ; 132: 107007, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37121183

RESUMO

Timely and appropriate retrofitting of existing structures holds paramount importance to ensure the structural integrity and sustainability. Fiber Reinforced Polymer (FRP) composites with high corrosion resistance, strength and durability, have been increasingly used in recent years for retrofitting of concrete infrastructure. The effectiveness of retrofitting is primarily dependent on the appropriate integrity at the interface between FRP and concrete substrate. Presence of any interface flaw can jeopardize the structural performance. In the present study, investigations are carried out to detect the early stage flaws at the FRP-concrete interface using ultrasonic waves. Artificial flaws of different size are introduced in the adhesive (epoxy) layer of carbon based FRP composite concrete beam. Rayleigh waves (at different frequencies) are generated for measuring the response from different FRP composite-concrete specimens. The specimens consist of three different types of materials, namely, concrete, epoxy and FRP. Two different input excitation frequencies, i.e., 75 KHz and 250 KHz, are tried out during the experimental investigations. The output signals are processed using different linear and nonlinear ultrasonic methods. Numerical simulations are also performed to better understand the wave signals' interactions with the multi-layer composite medium. The results showed that the linear ultrasonic methods are not able to provide a consistent information on presence and extent of flaws. Nonlinear ultrasonic methods showed significantly better performance for characterizing both small and large flaws considered in this investigation. Sensitivity analysis reveals that relatively new and promising nonlinear ultrasonic technique, namely, the Sideband Peak Count-Index (SPC-I) performs remarkably well for detection of flaws in FRP-concrete interface.

8.
J Acoust Soc Am ; 153(3): 1612, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37002068

RESUMO

This paper describes the study of the acoustic field of a fluid-filled pipe subjected to axial stress based on the acoustoelastic theory. The pipe with applied axial stresses can be approximated as a transversely isotropic pipe, and hence, its acoustic fields can be expressed using potential functions. The velocity changes of longitudinal wave modes with applied stresses are analyzed for the pipe filled with oil by an analytical method. It was found that the longitudinal mode velocity changes almost uniformly with the applied stresses. The high speed and low frequency plateaus of longitudinal wave modes are sensitive to stress. The relationship between stress and the velocity change of the guided wave is given. The results indicate that non-destructive testing techniques using longitudinal wave modes have strong potential to identify and monitor the stress levels in pipe structures.

9.
Ultrasonics ; 132: 106982, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36913829

RESUMO

In this paper, the formation of theoretical error is presented to investigate the acoustic source localization (ASL) error that can be expected from traditional L-shaped, cross-shaped, square-shaped, and modified square-shaped sensor cluster arrangements. The response surface model based on the optimal Latin hypercube design is developed to theoretically study the effects of sensor placement parameters on the error evaluation index of root mean squared relative error (RMSRE) for the four techniques. The ASL results from the four techniques with the optimal placement parameters are analyzed theoretically. The relevant experiments are conducted for verifying the above theoretical research. The results show that the theoretical error, formed by the difference between the true and the predicted wave propagation directions is related to arrangement of sensors. The results also show that the sensor spacing and the cluster spacing are the two parameters that affect the ASL error most. Between these two parameters the sensor spacing has the stronger influence. The RMSRE increases with an increasing sensor spacing and a decreasing cluster spacing. Meanwhile, the interaction effect of placement parameters should be also emphasized, especially that between the sensor spacing and the cluster spacing for the L-shaped sensor cluster-based technique. Among the four cluster-based techniques, the newly modified square-shaped sensor cluster-based technique shows the smallest RMSRE and not the largest number of sensors. This research on error generation and analysis will provide guidance for the optimal sensor arrangements in cluster-based techniques.

10.
Ultrasonics ; 128: 106858, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36272297

RESUMO

The ultrasonic Non-Destructive Testing and Evaluation (NDT&E) has been widely used for Structural Health Monitoring (SHM). The conventional linear ultrasonic technique which is suitable for detecting macro-scale defects is routinely used in industry; however, it often fails to detect the micro-scale defects. Generally, micro-defects in a material appear first due to dislocations at grain boundaries. These micro-defects then grow and coalesce to form macro-defects. The crack growth rate is much faster for macro-defects than micro-defects. Therefore, monitoring micro-defects is important to avoid catastrophic failures of structures. Nonlinear ultrasonic techniques help to detect micro-defects. A recently developed nonlinear ultrasonic technique called Sideband Peak Count - Index (SPC-I) technique has some inherent advantages over other nonlinear techniques for monitoring progression of micro-defects. In this research, the SPC-I technique is further modified. This modified technique, Sideband Peak Intensity (SPI) technique, is shown to be more robust and easier to implement. Both SPC-I and SPI techniques are used to monitor the damage progression in impact induced damages in metals. Similarities and dissimilarities between these two techniques are investigated. Then it is concluded that the SPI technique is good as a general-purpose robust damage monitoring tool that can be used by less skilled users while the SPC-I technique although requires more skills has more sensitivity and has the flexibility for an in-depth damage analysis in materials.


Assuntos
Ultrassom
11.
J Acoust Soc Am ; 152(5): 3035, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36456255

RESUMO

This work presents a peri-ultrasound theory based on ordinary state-based peridynamics for modeling elastic waves propagating in three-dimensional (3-D) plate structures and interacting with multiple cracks. A recently developed nonlinear ultrasonic technique called sideband peak count-index (or SPC-I) is adopted for monitoring one or more cracks with thickness values equal to 0 mm (crack-free), 1, 2, and 4 mm. Three separate scenarios-one crack, two cracks, and four cracks in 3-D plate structures-are investigated. These cracks can be classified as thin and thick cracks depending on the horizon size, which is mentioned in peri-ultrasound theory. Computed results for all three cases show larger SPC-I values for thin cracks than for thick cracks and the case of no cracks. This observation is in line with the previously reported results in the literature and proves that the state-based peri-ultrasound theory can capture the expected nonlinear response of elastic waves interacting with multiple cracks without changing the cracks' surface locations artificially, and this is always needed in most of the other numerical methods. The proposed state-based peri-ultrasound theory is more flexible and reliable for solving 3-D problems, and the out-of-plane wave field can be obtained for engineering analysis.

12.
J Acoust Soc Am ; 152(2): 765, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36050147

RESUMO

In this paper, we construct a borehole model with an impermeable/permeable wall and study the seismoelectric responses. First, we define the boundary conditions at the borehole wall, then the acoustic field and electric field are simulated by the real axis integral method. In order to have a comprehensive analysis of the body wave components, we use the secant integral method to simulate the body waves and give the excitation intensity spectrum in the frequency domain. The results show that the impermeability of the borehole wall significantly increases the amplitude of the acoustic field generated by Stoneley waves. This is because the closed pores at the boundary make Stoneley waves energy leak more slowly and hence attenuating less. The impermeable borehole wall weakens the electromagnetic interface response. Besides, both P wave and S wave and their accompanying electric field properties are affected by boundary connectivity. This investigation provides a theoretical basis for qualitatively judging borehole wall permeability by the seismoelectric signals.

13.
Ultrasonics ; 124: 106770, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35643054

RESUMO

Using the nonlinear interaction effect between ultrasonic Lamb waves and microcracks to detect and locate microcracks has the advantages of fast detection speed and high sensitivity. In this paper, a method for microcrack localization based on cross-shaped sensor clusters in a plate is proposed by combining nonlinear ultrasonic Lamb wave technology and time difference of arrival (TDOA) technology. The antisymmetric (A0) mode at low frequency is chosen as the primary Lamb wave to simplify the complication of the dispersion and multi-mode properties of Lamb waves. The selected mode pair (A0-s0) weakens the influence of the cumulative growth effect of higher harmonics induced by the inherent material nonlinearity on the microcrack characteristic signals. Pulse inversion technique and cross correlation function are used to extract the TDOAs of the nonlinear characteristic signals including microcrack information. The cross-shaped sensor clusters approach proposed for the first time can achieve reliable and fast microcrack localization without being affected by the duration of the excitation signal, and a priori knowledge of group velocities of primary wave modes or generated harmonics. Experimental and numerical results validate the proposed method in isotropic and anisotropic plates. This paper provides a new idea for nonlinear ultrasonic nondestructive evaluation and structural health monitoring of microcracks in plates.

14.
Ultrasonics ; 124: 106754, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35512578

RESUMO

A convenient, accurate and precise method is proposed to determine velocities of ultrasonic Rayleigh waves in different materials by extracting central frequencies of signals, which are measured by a comb transducer and converted to the frequency domain using the fast Fourier transformation (FFT). The velocities can be calculated as cr = fl, where f is the central frequency of the wave signal and l is the teeth spacing or period of the comb transducer. The experimental measurements are easy to do, as long as the Rayleigh wave reflected from the standard reflectors are measured using one comb transducer, without knowing the wave propagation distances and times. Results show that the proposed technique has a high level of precision, as the central frequencies are very stable. The same comb transducer is used to measure the Rayleigh wave velocities in different materials where the velocities vary from 2100 m/s to 3400 m/s. Comparison of the experimental results with those measured using the time-of-flight method showed a high level of accuracy - all relative errors were found to be less than 1%.

15.
J Acoust Soc Am ; 151(2): 1341, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35232116

RESUMO

Structural failure caused by corrosion of the reinforcing steel in concrete structures is quite common. In most cases, corrosion cracks appear on the surface at a late stage, leaving inadequate time for taking any measures. This paper investigates the detection of corrosion damage in reinforced concrete elements by using nonlinear ultrasonic (NLU) techniques. Various linear ultrasonic and NLU techniques were adopted to identify the most sensitive technique and ultrasonic parameters for corrosion induced damage detection at its early stage. It is observed that the linear techniques are not very effective in detecting corrosion induced damage. The sideband peak count-index (or SPC-I), a relatively new and promising technique, has been found to be an excellent indicator for the detection of corrosion induced damage initiation. However, its efficacy for detecting corrosion induced damage has not yet been reported. The present study shows that the SPC-I-based NLU technique outperforms (with the highest sensitivity) all other NLU techniques for detecting the onset of corrosion in steel and micro-crack formation in the surrounding material. As the corrosion progresses and cracks appear on the surface of the concrete, the efficiency of the SPC-I slowly weakens and other technique(s) are found to be quite efficient at that stage.

16.
Ultrasonics ; 119: 106623, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34739951

RESUMO

The uncertainty in material properties of an anisotropic plate may influence the acoustic source localization process undertaken for the plate. To study this effect of material uncertainty, the two moduli of elasticity of an orthotropic plate material are considered in this note as independent random variables and the propagation of this material uncertainty through the wave front shape-based acoustic source localization approach is investigated. Assuming lognormal probability distributions for the two random variables, several design points in lognormal spaces are picked using Latin Hypercube Sampling. Finite element analysis is performed for each design point to simulate the elastic wave propagation due to an acoustic event and wave front shape-based approach is applied to estimate the source location. The time-of-arrivals and source localization errors obtained for each design point are considered as separate response functions at that design point and regression kriging metamodels through the responses at the design points are constructed. Monte Carlo simulations are carried out using these metamodels to obtain the distribution parameters (i.e., ranges, means and standard deviations) of the time-of-arrivals and localization errors. A global sensitivity analysis is performed to estimate the effect of each random variable on the localization errors. It is observed that for lognormally distributed moduli of elasticity with same coefficients of variation, uncertainty in the modulus of elasticity in the major direction affects the source localization accuracy more compared to the uncertainty in the modulus of elasticity in the minor direction, particularly when the ellipse-based technique is used.

17.
Ultrasonics ; 115: 106472, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34058636

RESUMO

In reinforced concrete (RC), material nonlinearity is evident even in its undamaged state due to the inherent microstructure. In the present work, damage progression in RC structure at different levels of damage is investigated using linear and nonlinear ultrasonic techniques. The primary focus of this study is to monitor the structure from its initiation stage(s) of damage to advanced stages. Ultrasonic velocity tomography is first implemented to identify the weaker regions and map any damage occurring at various levels of loading. Two critical regions are identified from ultrasonic tomography and further damage characterization is carried out using various ultrasonic techniques to quantitatively assess the progression of damage in these two regions. The linear ultrasonic techniques such as time-of-flight (TOF) and attenuation, and the nonlinear ultrasonic techniques such as sub- and super- harmonic, energy distribution, etc. are employed to detect the damage progression. It is found that the changes in linear parameters due to damage progression in RC structure are often insignificant and inconsistent. However, some of the nonlinear ultrasonics-based techniques are found to be very efficient to monitor the damage progression. A relatively new and promising nonlinear ultrasonic technique, namely the sideband peak count-index (or SPC-I) provides a very clear and consistent indication of damage at the early stage. The present study shows that during the initial stages of damage, SPC-I based nonlinear technique performs significantly better (at both regions as identified through ultrasonic tomography) than other linear and nonlinear techniques, whereas at higher damage stage the superiority of this nonlinear ultrasonic technique slowly diminishes. The present study also shows that out of all nonlinear ultrasonics-based techniques considered here, SPC-I technique provides the highest sensitivity to the damage progression and can be effectively used as a very robust nonlinear ultrasonic tool for identifying the onset and progression of damage in RC structures.

18.
Sensors (Basel) ; 21(2)2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33450868

RESUMO

Acoustic source localization in a large pressure vessel or a storage tank-type cylindrical structure is important in preventing structural failure. However, this can be challenging, especially for cylindrical pressure vessels and tanks that are made of anisotropic materials. The large area of the cylindrical structure often requires a substantial number of sensors to locate the acoustic source. This paper first applies conventional acoustic source localization techniques developed for the isotropic, flat plate-type structures to cylindrical structures. The experimental results show that the conventional acoustic source localization technique is not very accurate for source localization on cylindrical container surfaces. Then, the L-shaped sensor cluster technique is applied to the cylindrical surface of the pressure vessel, and the experimental results prove the applicability of using this technique. Finally, the arbitrary triangle-shaped sensor clusters are attached to the surface of the cylindrical structure to locate the acoustic source. The experimental results show that the two acoustic source localization techniques using sensor clusters can be used to monitor the location of acoustic sources on the surface of anisotropic cylindrical vessels, using a small number of sensors. The arbitrarily triangle-shaped sensors can be arbitrarily placed in a cluster on the surface of the cylindrical vessel. The results presented in this paper provide a theoretical and experimental basis for the surface acoustic source localization method for a cylindrical pressure vessel and lay a theoretical foundation for its application.

19.
Ultrasonics ; 100: 105977, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31491570

RESUMO

Development of acoustic source localization techniques in anisotropic plates has gained attention in the recent past and still has scope of improvement. Most of such techniques existing in the literature either require known material properties or assume a straight line propagation of wave energy from the acoustic source to a sensor. These limitations have been overcome in recent years by employing wave front shape-based techniques. However, the existing wave front shape-based techniques are applicable in situations where the orientation of the axes of symmetry of the anisotropic plate is known beforehand. In the present study, a modified version of these techniques, namely, elliptical and parametric curve-based techniques, is proposed. This new version is useful when the angle between the axes of symmetry and the reference Cartesian coordinate system is unknown. In the new definition of the objective function, the orientation of the axes of symmetry of the anisotropic plate is treated as an input in the objective function in addition to the other unknowns like the source coordinates and the curve parameters. A numerical study illustrates how the modified new techniques can localize the acoustic source with sufficient accuracy in an anisotropic plate with unknown orientation of the axes of symmetry and its material properties.

20.
J Acoust Soc Am ; 146(2): 1290, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31472535

RESUMO

A borehole multipole acoustic field in a pre-stressed formation is investigated. The pre-stressed formation is modeled as a transversely isotropic medium induced by uniaxial stress. The formation is assumed to be isotropic in absence of any static stress and then becomes anisotropic due to the applied stress parallel to the borehole axis. The approximate equivalent elastic constants of the stress-induced anisotropic medium are derived from the theory of acoustoelasticity. The nonlinear static stress-strain relation is used for both small and large static deformations. This problem can be solved analytically because of uniformity of deformation induced by static stress applied parallel to the borehole axis. The stress effects on the velocity of guided waves and amplitude of waveforms excited by monopole, dipole, and quadrupole sources are investigated. Numerical results show that the velocities of guided waves increase with uniaxial stress. The uniaxial stress affects both amplitude and arrival time of the acoustic waves in the borehole. The integral amplitude of full waveforms varies almost in a parabolic manner with the increasing stress level and thus shows sensitivity to the uniaxial stress. This result may be helpful for remote stress measurements in boreholes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...