Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mitochondrial DNA B Resour ; 7(8): 1531-1533, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36034533

RESUMO

The Georgian Mountain Cattle (GMC) (Species: Bos taurus Linnaeus, 1758 - aurochs, domesticated cattle, domestic cattle (feral), Aurochs, Subspecies: Bos taurus taurus Linnaeus, 1758) is a local breed from Georgia. It is well adapted to the harsh mountain conditions of the Caucasus, resistant to different pathogens and able to provide milk during the lowest feed rations. In this study, we report for the first time the complete mitochondrial genome sequence of GMC. We selected the five unique control region mitochondrial haplotypes of GMC and sequenced for the complete mitogenome, using Illumina MiSeq platform. The results of our research showed a total of 59 substitutions and seven indels, in comparison to the Bovine Reference Sequence (BRS; V00654), with 15 SNPs never observed before. The complete mitochondrial DNA (mtDNA) phylogenetic analyses revealed hitherto unknown haplotypes falling outside the known taurine diversity. Four mitogenomes fell within haplogroup T (sub-lineages T1, T3, and T5), while one belonged to haplogroup Q (branch Q1). The combination of our results with precision agriculture holds great promises for the identification of genetic variants economically affecting important traits of GMC cattle.

2.
Mol Genet Genomics ; 292(6): 1377-1389, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28785866

RESUMO

Grapevine is the one of the most important fruit species in the world. Comparative genome sequencing of grape cultivars is very important for the interpretation of the grape genome and understanding its evolution. The genomes of four Georgian grape cultivars-Chkhaveri, Saperavi, Meskhetian green, and Rkatsiteli, belonging to different haplogroups, were resequenced. The shotgun genomic libraries of grape cultivars were sequenced on an Illumina HiSeq. Pinot Noir nuclear, mitochondrial, and chloroplast DNA were used as reference. Mitochondrial DNA of Chkhaveri closely matches that of the reference Pinot noir mitochondrial DNA, with the exception of 16 SNPs found in the Chkhaveri mitochondrial DNA. The number of SNPs in mitochondrial DNA from Saperavi, Meskhetian green, and Rkatsiteli was 764, 702, and 822, respectively. Nuclear DNA differs from the reference by 1,800,675 nt in Chkhaveri, 1,063,063 nt in Meskhetian green, 2,174,995 in Saperavi, and 5,011,513 in Rkatsiteli. Unlike mtDNA Pinot noir, chromosomal DNA is closer to the Meskhetian green than to other cultivars. Substantial differences in the number of SNPs in mitochondrial and nuclear DNA of Chkhaveri and Pinot noir cultivars are explained by backcrossing or introgression of their wild predecessors before or during the process of domestication. Annotation of chromosomal DNA of Georgian grape cultivars by MEGANTE, a web-based annotation system, shows 66,745 predicted genes (Chkhaveri-17,409; Saperavi-17,021; Meskhetian green-18,355; and Rkatsiteli-13,960). Among them, 106 predicted genes and 43 pseudogenes of terpene synthase genes were found in chromosomes 12, 18 random (18R), and 19. Four novel TPS genes not present in reference Pinot noir DNA were detected. Two of them-germacrene A synthase (Chromosome 18R) and (-) germacrene D synthase (Chromosome 19) can be identified as putatively full-length proteins. This work performs the first attempt of the comparative whole genome analysis of different haplogroups of Vitis vinifera cultivars. Based on complete nuclear and mitochondrial DNA sequence analysis, hypothetical phylogeny scheme of formation of grape cultivars is presented.


Assuntos
Genoma de Planta , Vitis/genética , Alquil e Aril Transferases/genética , Cromossomos de Plantas , DNA Mitocondrial/genética , DNA de Plantas/genética , Polimorfismo de Nucleotídeo Único
3.
Neuroscience ; 194: 112-23, 2011 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-21839805

RESUMO

The enzyme cytochrome c oxidase is a mitochondrial protein complex that plays a crucial role in oxidative metabolism. In the present study we show that amounts of two of its protein subunits (cytochrome c oxidase subunit I [CO-I] and II [CO-II]) are influenced by both learning-independent and learning-dependent factors. Converging evidence has consistently implicated the left intermediate medial mesopallium (IMM) in the chick brain as a memory store for the learning process of visual imprinting. This form of learning proceeds very shortly after chicks have been hatched. In the left IMM, but not in three other brain regions studied, amounts of CO-I and CO-II co-varied: the correlation between them was highly significant. This relationship did not depend on learning. However, learning influenced the amounts of both proteins, but did so only in the left IMM. In this region, amounts of each protein increased with the strength of learning. These findings raise the possibility that the molecular mechanisms involved in the coordinated assembly of cytochrome c oxidase are precociously developed in the left IMM compared to the other regions studied. This precocious development may enable the region to respond efficiently to the oxidative demands made by the changes in synaptic connectivity that underlie memory formation and would allow the left IMM to function as a storage site within hours after hatching.


Assuntos
Cérebro/enzimologia , Complexo IV da Cadeia de Transporte de Elétrons/química , Lateralidade Funcional/fisiologia , Aprendizagem/fisiologia , Memória/fisiologia , Proteínas Mitocondriais/química , Proteínas Mitocondriais/fisiologia , Animais , Cérebro/anatomia & histologia , Cérebro/crescimento & desenvolvimento , Galinhas , Complexo IV da Cadeia de Transporte de Elétrons/biossíntese , Complexo IV da Cadeia de Transporte de Elétrons/genética , Complexo IV da Cadeia de Transporte de Elétrons/fisiologia , Lateralidade Funcional/genética , Impressão Genômica/fisiologia , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/fisiologia , Proteínas Mitocondriais/genética , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...