Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Elife ; 82019 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-31625906

RESUMO

Medial and lateral hypothalamic loci are known to suppress and enhance appetite, respectively, but the dynamics and functional significance of their interaction have yet to be explored. Here we report that, in larval zebrafish, primarily serotonergic neurons of the ventromedial caudal hypothalamus (cH) become increasingly active during food deprivation, whereas activity in the lateral hypothalamus (LH) is reduced. Exposure to food sensory and consummatory cues reverses the activity patterns of these two nuclei, consistent with their representation of opposing internal hunger states. Baseline activity is restored as food-deprived animals return to satiety via voracious feeding. The antagonistic relationship and functional importance of cH and LH activity patterns were confirmed by targeted stimulation and ablation of cH neurons. Collectively, the data allow us to propose a model in which these hypothalamic nuclei regulate different phases of hunger and satiety and coordinate energy balance via antagonistic control of distinct behavioral outputs.


How soon after a meal do you start feeling hungry again? The answer depends on a complex set of processes within the brain that regulate appetite. A key player in these processes is the hypothalamus, a small structure at the base of the brain. The hypothalamus consists of many different subregions, some of which are responsible for increasing or decreasing hunger. Wee, Song et al. now show how two of these subregions interact to regulate appetite and feeding, by studying them in hungry zebrafish larvae. The brains of zebrafish have many features in common with the brains of mammals, but they are smaller and transparent, which makes them easier to study. Wee, Song et al. show that as larvae become hungry, an area called the caudal hypothalamus increases its activity. But when the larvae find food and start feeding, activity in this area falls sharply. It then remains low while the hungry larvae eat as much as possible. Eventually the larvae become full and start eating more slowly. As they do so, the activity of the caudal hypothalamus goes back to normal levels. While this is happening, activity in a different area called the lateral hypothalamus shows the opposite pattern. It has low activity in hungry larvae, which increases when food becomes available and feeding begins. When the larvae finally reduce their rate of feeding, the activity in the lateral hypothalamus drops back down. The authors posit that by inhibiting each other's activity, the caudal and lateral hypothalamus work together to ensure that animals search for food when necessary, but switch to feeding behavior when food becomes available. Serotonin ­ which is produced by the caudal hypothalamus ­ and drugs that act like it have been proposed to suppress appetite, but they have varied and complex effects on food intake and weight gain. By showing that activity in the caudal hypothalamus changes depending on whether food is present, the current findings may provide insights into this complexity. More generally, they show that mapping the circuits that regulate appetite and feeding in simple organisms could help us understand the same processes in humans.


Assuntos
Apetite , Hipotálamo/fisiologia , Rede Nervosa/fisiologia , Neurônios Serotoninérgicos/fisiologia , Peixe-Zebra/fisiologia , Animais , Larva/fisiologia
2.
Biol Open ; 6(5): 540-550, 2017 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-28298318

RESUMO

The patterning activity of a morphogen depends on secretion and dispersal mechanisms that shape its distribution to the cells of a receptive field. In the case of the protein Hedgehog (Hh), these mechanisms of secretion and transmission remain unclear. In the developing Drosophila visual system, Hh is partitioned for release at opposite poles of photoreceptor neurons. Release into the retina regulates the progression of eye development; axon transport and release at axon termini trigger the development of postsynaptic neurons in the brain. Here we show that this binary targeting decision is controlled by a C-terminal proteolysis. Hh with an intact C-terminus undergoes axonal transport, whereas a C-terminal proteolysis enables Hh to remain in the retina, creating a balance between eye and brain development. Thus, we define a novel mechanism for the apical/basal targeting of this developmentally important protein and posit that similar post-translational regulation could underlie the polarity of related ligands.

3.
Biol Open ; 6(5): 714-721, 2017 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-28298319

RESUMO

The Drosophila melanogaster (Dmel) eye is an ideal model to study development, intracellular signaling, behavior, and neurodegenerative disease. Interestingly, dynamic data are not commonly employed to investigate eye-specific disease models. Using axonal transport of the morphogen Hedgehog (Hh), which is integral to Dmel eye-brain development and implicated in stem cell maintenance and neoplastic disease, we demonstrate the ability to comprehensively quantify and characterize its trafficking in various neuron types and a neurodegeneration model in live early third-instar larval Drosophila We find that neuronal Hh, whose kinetics have not been reported previously, favors fast anterograde transport and varies in speed and flux with respect to axonal position. This suggests distinct trafficking pathways along the axon. Lastly, we report abnormal transport of Hh in an accepted model of photoreceptor neurodegeneration. As a technical complement to existing eye-specific disease models, we demonstrate the ability to directly visualize transport in real time in intact and live animals and track secreted cargoes from the axon to their release points. Particle dynamics can now be precisely calculated and we posit that this method could be conveniently applied to characterizing disease pathogenesis and genetic screening in other established models of neurodegeneration.

4.
Mech Ageing Dev ; 141-142: 35-45, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25265088

RESUMO

The molecular mechanisms influencing healthspan are unclear but mitochondrial function, resistance to oxidative stress and proteostasis are recurring themes. Tumor necrosis factor Receptor Associated Protein 1 (TRAP1), the mitochondrial analog of Hsp75, regulates levels of reactive oxygen species in vitro and is found expressed at higher levels in tumor cells where it is thought to play a pro-survival role. While TRAP1-directed compartmentalized protein folding is a promising target for cancer therapy, its role at the organismal level is unclear. Here we report that overexpression of TRAP1 in Drosophila extends healthspan by enhancing stress resistance, locomotor activity and fertility while depletion of TRAP1 has the opposite effect, with little effect on lifespan under both conditions. In addition, modulating TRAP1 expression promotes the nuclear translocation of homeobox protein Dve and increases expression of genes associated with the mitochondrial unfolded protein response (UPR(mt)), indicating an activation of this proteostasis pathway. Notably, independent genetic knockdown of components of the UPR(mt) pathway dampen the enhanced stress resistance observed in TRAP1 overexpression flies. Together these studies suggest that TRAP1 regulates healthspan, potentially through activation of the UPR(mt).


Assuntos
Proteínas de Drosophila/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Longevidade/fisiologia , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Resposta a Proteínas não Dobradas/fisiologia , Animais , Proteínas de Drosophila/genética , Drosophila melanogaster , Proteínas de Choque Térmico HSP90/genética , Mitocôndrias/genética , Proteínas Mitocondriais/genética
5.
PLoS One ; 7(5): e37303, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22615969

RESUMO

Receptors of the Eph family of tyrosine kinases and their Ephrin ligands are involved in developmental processes as diverse as angiogenesis, axon guidance and cell migration. However, our understanding of the Eph signaling pathway is incomplete, and could benefit from an analysis by genetic methods. To this end, we performed a genetic modifier screen for mutations that affect Eph signaling in Drosophila melanogaster. Several dozen loci were identified on the basis of their suppression or enhancement of an eye defect induced by the ectopic expression of Ephrin during development; many of these mutant loci were found to disrupt visual system development. One modifier locus, reph (regulator of eph expression), was characterized in molecular detail and found to encode a putative nuclear protein that interacts genetically with Eph signaling pathway mutations. Reph is an autonomous regulator of Eph receptor expression, required for the graded expression of Eph protein and the establishment of an optic lobe axonal topographic map. These results reveal a novel component of the regulatory pathway controlling expression of eph and identify reph as a novel factor in the developing visual system.


Assuntos
Proteínas de Drosophila/genética , Proteínas de Drosophila/fisiologia , Drosophila melanogaster/genética , Proteínas de Membrana/genética , Proteínas Nucleares/fisiologia , Lobo Óptico de Animais não Mamíferos/metabolismo , Receptores da Família Eph/genética , Animais , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crescimento & desenvolvimento , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Proteínas de Membrana/metabolismo , Mutação , Lobo Óptico de Animais não Mamíferos/crescimento & desenvolvimento , Receptores da Família Eph/metabolismo , Transdução de Sinais/genética
6.
Dev Cell ; 22(2): 363-76, 2012 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-22340498

RESUMO

In most olfactory systems studied to date, neurons that express the same odorant receptor (Or) gene are scattered across sensory epithelia, intermingled with neurons that express different Or genes. In Drosophila, olfactory sensilla that express the same Or gene are dispersed on the antenna and the maxillary palp. Here we show that Or identity is specified in a spatially stereotyped pattern by the cell-autonomous activity of the transcriptional regulators Engrailed and Dachshund. Olfactory sensilla then become highly motile and disperse beneath the epidermis. Thus, positional information and cell motility underlie the dispersed patterns of Drosophila Or gene expression.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Regulação da Expressão Gênica , Proteínas de Homeodomínio/metabolismo , Proteínas Nucleares/metabolismo , Neurônios Receptores Olfatórios/fisiologia , Receptores Odorantes/metabolismo , Sensilas/fisiologia , Fatores de Transcrição/metabolismo , Animais , Animais Geneticamente Modificados , Movimento Celular , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Células Epidérmicas , Epiderme/metabolismo , Proteínas de Homeodomínio/genética , Mutação/genética , Proteínas Nucleares/genética , Neurônios Receptores Olfatórios/citologia , Receptores Odorantes/genética , Fatores de Transcrição/genética , Transgenes/fisiologia
7.
Proc Natl Acad Sci U S A ; 107(18): 8322-7, 2010 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-20404143

RESUMO

The Toll signaling pathway is required for the innate immune response against fungi and Gram-positive bacteria in Drosophila. Here we show that the endosomal proteins Myopic (Mop) and Hepatocyte growth factor-regulated tyrosine kinase substrate (Hrs) are required for the activation of the Toll signaling pathway. This requirement is observed in cultured cells and in flies, and epistasis experiments show that the Mop protein functions upstream of the MyD88 adaptor and the Pelle kinase. Mop and Hrs, which are critical components of the ESCRT-0 endocytosis complex, colocalize with the Toll receptor in endosomes. We conclude that endocytosis is required for the activation of the Toll signaling pathway.


Assuntos
Proteínas de Drosophila/imunologia , Drosophila melanogaster/imunologia , Endocitose , Complexos Endossomais de Distribuição Requeridos para Transporte/imunologia , Imunidade Inata , Fosfoproteínas/imunologia , Proteínas Tirosina Fosfatases/imunologia , Transdução de Sinais , Receptores Toll-Like/imunologia , Animais , Linhagem Celular , Proteínas de Drosophila/genética , Drosophila melanogaster/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Fosfoproteínas/genética , Proteínas Tirosina Fosfatases/genética , Interferência de RNA , Receptores Toll-Like/metabolismo
8.
J Neurosci Methods ; 188(2): 195-204, 2010 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-20153774

RESUMO

Drosophila olfactory aversive conditioning has served as a powerful model system with which to elucidate the molecular and neuronal mechanisms underlying memory formation. In the typical protocol, flies are exposed to a constant odor stream while receiving a pulsed electric shock in the conditioning tube of a manual apparatus. We have devised a simple, low-cost semi-automated conditioning apparatus that computationally controls the delivery of odor and shock. A semiconductor-based odor sensor is employed to monitor the change of odor concentration in the training tube. The system thus allows electric shocks to be precisely matched with odor concentration in the training tube. We found that short-term memory performance was improved with a pulsed odor flow protocol, in which odor is presented in short pulses, each paired with electric shock, rather than as a constant flow. The effect of pulsed odor flow might be ascribed to the phenomenon of 'conditioned approach', where approach toward an odor is induced when the electric shock is presented before odor pulse ends. Our data shows that the system is applicable to the study of olfactory memory formation and to the examination of conditioning parameters at a level of detail not practical with a manual apparatus.


Assuntos
Drosophila melanogaster/fisiologia , Etologia/instrumentação , Aprendizagem/fisiologia , Testes Neuropsicológicos , Neuropsicologia/instrumentação , Ensino , Animais , Automação/instrumentação , Automação/métodos , Aprendizagem da Esquiva/fisiologia , Encéfalo/citologia , Encéfalo/fisiologia , Condicionamento Psicológico/fisiologia , Drosophila melanogaster/citologia , Estimulação Elétrica , Etologia/métodos , Memória/fisiologia , Neuropsicologia/métodos , Odorantes , Condutos Olfatórios/citologia , Condutos Olfatórios/fisiologia , Olfato/fisiologia , Especificidade da Espécie
9.
J Biol Chem ; 285(4): 2562-8, 2010 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-19920144

RESUMO

The hedgehog (HH) family of ligands plays an important instructional role in metazoan development. HH proteins are initially produced as approximately 45-kDa full-length proteins, which undergo an intramolecular cleavage to generate an amino-terminal product that subsequently becomes cholesterol-modified (HH-Np). It is well accepted that this cholesterol-modified amino-terminal cleavage product is responsible for all HH-dependent signaling events. Contrary to this model we show here that full-length forms of HH proteins are able to traffic to the plasma membrane and participate directly in cell-cell signaling, both in vitro and in vivo. We were also able to rescue a Drosophila eye-specific hh loss of function phenotype by expressing a full-length form of hh that cannot be processed into HH-Np. These results suggest that in some physiological contexts full-length HH proteins may participate directly in HH signaling and that this novel activity of full-length HH may be evolutionarily conserved.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Proteínas Hedgehog , Transdução de Sinais/fisiologia , Animais , Comunicação Celular/fisiologia , Embrião de Galinha , Galinhas , Drosophila , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Evolução Molecular , Proteínas Hedgehog/química , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Holoprosencefalia/genética , Holoprosencefalia/fisiopatologia , Humanos , Mutagênese Sítio-Dirigida , Tubo Neural/embriologia , Tubo Neural/fisiologia , Receptores Patched , Fenótipo , Estrutura Terciária de Proteína , Transporte Proteico/fisiologia , Coelhos , Receptores de Superfície Celular/metabolismo , Relação Estrutura-Atividade
10.
J Mol Evol ; 68(5): 490-7, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19357800

RESUMO

The metabolic cycle of Saccharomyces cerevisiae consists of alternating oxidative (respiration) and reductive (glycolysis) energy-yielding reactions. The intracellular concentrations of amino acid precursors generated by these reactions oscillate accordingly, attaining maximal concentration during the middle of their respective yeast metabolic cycle phases. Typically, the amino acids themselves are most abundant at the end of their precursor's phase. We show that this metabolic cycling has likely biased the amino acid composition of proteins across the S. cerevisiae genome. In particular, we observed that the metabolic source of amino acids is the single most important source of variation in the amino acid compositions of functionally related proteins and that this signal appears only in (facultative) organisms using both oxidative and reductive metabolism. Periodically expressed proteins are enriched for amino acids generated in the preceding phase of the metabolic cycle. Proteins expressed during the oxidative phase contain more glycolysis-derived amino acids, whereas proteins expressed during the reductive phase contain more respiration-derived amino acids. Rare amino acids (e.g., tryptophan) are greatly overrepresented or underrepresented, relative to the proteomic average, in periodically expressed proteins, whereas common amino acids vary by a few percent. Genome-wide, we infer that 20,000 to 60,000 residues have been modified by this previously unappreciated pressure. This trend is strongest in ancient proteins, suggesting that oscillating endogenous amino acid availability exerted genome-wide selective pressure on protein sequences across evolutionary time.


Assuntos
Aminoácidos/metabolismo , Evolução Molecular , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Análise de Sequência de Proteína , Sequência de Aminoácidos , Viés , Variação Genética , Dados de Sequência Molecular
11.
Curr Opin Neurobiol ; 16(5): 535-9, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16962314

RESUMO

Identifying the neural circuits that mediate particular behaviors and uncovering their plasticity is an endeavor at the heart of neuroscience. This effort is allied with the elucidation of plasticity mechanisms, because the molecular determinants of plasticity can be markers for the neurons and synapses that are modified by experience. Of particular interest is protein synthesis localized to the synapse, which might establish and maintain the stable modification of neuronal properties, including the pattern and strength of synaptic connections. Recent studies reveal that microRNAs and the RISC pathway regulate synaptic protein synthesis. Is synaptic activity of the RISC pathway a molecular signature of memory?


Assuntos
Encéfalo/fisiologia , Memória/fisiologia , MicroRNAs/metabolismo , Plasticidade Neuronal/fisiologia , Complexo de Inativação Induzido por RNA/metabolismo , Sinapses/metabolismo , Animais , Expressão Gênica/fisiologia , Regulação da Expressão Gênica/fisiologia , Humanos , MicroRNAs/genética , Biossíntese de Proteínas/fisiologia , Complexo de Inativação Induzido por RNA/genética , Sinapses/genética
12.
Dev Cell ; 10(5): 635-46, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16678778

RESUMO

The developmental signal Hedgehog is distributed to two receptive fields by the photoreceptor neurons of the developing Drosophila retina. Delivery to the retina propagates ommatidial development across a precursor field. Transport along photoreceptor axons induces the development of postsynaptic neurons in the brain. Hedgehog is composed of N-terminal and C-terminal domains that dissociate in an autoproteolytic reaction that attaches cholesterol to the N-terminal cleavage product. Here, we show that the N-terminal domain is targeted to the retina when synthesized in the absence of the C-terminal domain. In contrast to studies that have focused on cholesterol as a determinant of subcellular localization, we find that the C-terminal domain harbors a conserved motif that overrides retinal localization, sending most of the autocleavage products into vesicles bound for growth cones or synapses. Competition between targeting signals at the opposite ends of Hedgehog apparently controls the match between eye and brain development.


Assuntos
Axônios/metabolismo , Encéfalo/embriologia , Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Retina/embriologia , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Encéfalo/citologia , Encéfalo/metabolismo , Drosophila melanogaster/anatomia & histologia , Cones de Crescimento/metabolismo , Proteínas Hedgehog , Dados de Sequência Molecular , Células Fotorreceptoras de Invertebrados/citologia , Processamento de Proteína Pós-Traducional , Transporte Proteico , Retina/citologia , Retina/metabolismo , Transdução de Sinais , Sinaptotagminas/metabolismo , Vesículas Transportadoras/metabolismo
13.
Cell ; 124(1): 191-205, 2006 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-16413491

RESUMO

Long-lasting forms of memory require protein synthesis, but how the pattern of synthesis is related to the storage of a memory has not been determined. Here we show that neural activity directs the mRNA of the Drosophila Ca(2+), Calcium/Calmodulin-dependent Kinase II (CaMKII), to postsynaptic sites, where it is rapidly translated. These features of CaMKII synthesis are recapitulated during the induction of a long-term memory and produce patterns of local protein synthesis specific to the memory. We show that mRNA transport and synaptic protein synthesis are regulated by components of the RISC pathway, including the SDE3 helicase Armitage, which is specifically required for long-lasting memory. Armitage is localized to synapses and lost in a memory-specific pattern that is inversely related to the pattern of synaptic protein synthesis. Therefore, we propose that degradative control of the RISC pathway underlies the pattern of synaptic protein synthesis associated with a stable memory.


Assuntos
Proteínas Quinases Dependentes de Cálcio-Calmodulina/biossíntese , Memória/fisiologia , Biossíntese de Proteínas/fisiologia , Complexo de Inativação Induzido por RNA/metabolismo , Sinapses/fisiologia , Sequência de Aminoácidos , Animais , Cálcio/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Proteínas Quinases Dependentes de Cálcio-Calmodulina/genética , Drosophila , Regulação da Expressão Gênica/fisiologia , Modelos Neurológicos , Dados de Sequência Molecular , Neurônios/metabolismo , Biossíntese de Proteínas/genética , RNA Mensageiro/biossíntese , RNA Mensageiro/metabolismo , Sinapses/metabolismo , Transmissão Sináptica/fisiologia
14.
Proc Natl Acad Sci U S A ; 101(42): 15213-8, 2004 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-15469930

RESUMO

We report evidence for a developmental role of acetylcholine in axon pathfinding in the Drosophila visual system. Acetylcholine was detected on photoreceptor axons during their navigation to target sites in the brain, a time well before the formation of functional synapses. The pattern of photoreceptor axon projections was severely disrupted when acetylcholine synthesis or metabolism was altered or eliminated, or when transgenic alpha-bungarotoxin, a nicotinic acetylcholine receptor antagonist, was expressed in the developing eye or brain. The requirement for acetylcholine signaling exists before photoreceptor neurons form synaptic connections and does not require the function of vesicular acetylcholine transporter protein. That this early effect of acetylcholine is mediated through nonvesicular release is further supported by the observation that transgenic expression of tetanus toxin, a blocker of neurotransmitter release via synaptic vesicles, did not cause similar photoreceptor axon projection defects. These observations support the notion that a form of acetylcholine secretion mediates the behavior of growth cones during axon pathfinding.


Assuntos
Acetilcolina/metabolismo , Drosophila/fisiologia , Células Fotorreceptoras de Invertebrados/fisiologia , Acetilcolinesterase/genética , Animais , Animais Geneticamente Modificados , Axônios/fisiologia , Encéfalo/crescimento & desenvolvimento , Encéfalo/fisiologia , Bungarotoxinas/genética , Colina O-Acetiltransferase/genética , Drosophila/genética , Drosophila/crescimento & desenvolvimento , Olho/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Mosaicismo , Fenômenos Fisiológicos Oculares , Fenótipo , Células Fotorreceptoras de Invertebrados/crescimento & desenvolvimento , Proteínas Recombinantes/genética
15.
Development ; 131(10): 2291-303, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-15102705

RESUMO

In the developing Drosophila visual system, glia migrate into stereotyped positions within the photoreceptor axon target fields and provide positional information for photoreceptor axon guidance. Glial migration conversely depends on photoreceptor axons, as glia precursors stall in their progenitor zones when retinal innervation is eliminated. Our results support the view that this requirement for retinal innervation reflects a role of photoreceptor axons in the establishment of an axonal scaffold that guides glial cell migration. Optic lobe cortical axons extend from dorsal and ventral positions towards incoming photoreceptor axons and establish at least four separate pathways that direct glia to proper destinations in the optic lobe neuropiles. Photoreceptor axons induce the outgrowth of these scaffold axons. Most glia do not migrate when the scaffold axons are missing. Moreover, glia follow the aberrant pathways of scaffold axons that project aberrantly, as occurs in the mutant dachsous. The local absence of glia is accompanied by extensive apoptosis of optic lobe cortical neurons. These observations reveal a mechanism for coordinating photoreceptor axon arrival in the brain with the distribution of glia to multiple target destinations, where they are required for axon guidance and neuronal survival.


Assuntos
Axônios/fisiologia , Drosophila melanogaster/citologia , Neuroglia/fisiologia , Lobo Óptico de Animais não Mamíferos/embriologia , Animais , Padronização Corporal/fisiologia , Movimento Celular , Sobrevivência Celular , Morfogênese/fisiologia , Lobo Óptico de Animais não Mamíferos/citologia
16.
J Neurosci ; 22(4): 1338-49, 2002 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-11850461

RESUMO

Roles for Eph receptor tyrosine kinase signaling in the formation of topographic patterns of axonal connectivity have been well established in vertebrate visual systems. Here we describe a role for a Drosophila Eph receptor tyrosine kinase (EPH) in the control of photoreceptor axon and cortical axon topography in the developing visual system. Although uniform across the developing eye, EPH is expressed in a concentration gradient appropriate for conveying positional information during cortical axon guidance in the second-order optic ganglion, the medulla. Disruption of this graded pattern of EPH activity by double-stranded RNA interference or by ectopic expression of wild-type or dominant-negative transgenes perturbed the establishment of medulla cortical axon topography. In addition, abnormal midline fasciculation of photoreceptor axons resulted from the eye-specific expression of the dominant-negative EPH transgene. These observations reveal a conserved role for Eph kinases as determinants of topographic map formation in vertebrates and invertebrates.


Assuntos
Mapeamento Encefálico , Gânglios dos Invertebrados/fisiologia , Células Fotorreceptoras de Invertebrados/enzimologia , Receptores Proteína Tirosina Quinases/metabolismo , Vias Visuais/fisiologia , Animais , Animais Geneticamente Modificados , Axônios/enzimologia , Diferenciação Celular/fisiologia , Clonagem Molecular , Cruzamentos Genéticos , Drosophila , Gânglios dos Invertebrados/citologia , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Genes Dominantes , Cones de Crescimento/enzimologia , Imuno-Histoquímica , Hibridização In Situ , Dados de Sequência Molecular , Morfogênese , Neurônios/citologia , Neurônios/enzimologia , Fenótipo , Células Fotorreceptoras de Invertebrados/citologia , RNA de Cadeia Dupla/farmacologia , RNA Mensageiro , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Receptores Proteína Tirosina Quinases/genética , Receptor EphA1 , Sinapses/fisiologia , Transgenes , Vias Visuais/citologia , Vias Visuais/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...