Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanotechnology ; 28(4): 045707, 2017 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-27997370

RESUMO

InGaAs quantum wire (QWr) intermediate-band solar cell-based nanostructures grown by molecular beam epitaxy are studied. The electrical and interface properties of these solar cell devices, as determined by current-voltage (I-V) and capacitance-voltage (C-V) techniques, were found to change with temperature over a wide range of 20-340 K. The electron and hole traps present in these devices have been investigated using deep-level transient spectroscopy (DLTS). The DLTS results showed that the traps detected in the QWr-doped devices are directly or indirectly related to the insertion of the Si δ-layer used to dope the wires. In addition, in the QWr-doped devices, the decrease of the solar conversion efficiencies at low temperatures and the associated decrease of the integrated external quantum efficiency through InGaAs could be attributed to detected traps E1QWR_D, E2QWR_D, and E3QWR_D with activation energies of 0.0037, 0.0053, and 0.041 eV, respectively.

2.
Nanoscale Res Lett ; 5(8): 1320-3, 2010 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-20676193

RESUMO

Multilayers of InGaAs nanostructures are grown on GaAs(210) by molecular beam epitaxy. With reducing the thickness of GaAs interlayer spacer, a transition from InGaAs quantum dashes to arrow-like nanostructures is observed by atomic force microscopy. Photoluminescence measurements reveal all the samples of different spacers with good optical properties. By adjusting the InGaAs coverage, both one-dimensional and two-dimensional lateral ordering of InGaAs/GaAs(210) nanostructures are achieved.

3.
Int J Nanomedicine ; 5: 167-76, 2010 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-20463932

RESUMO

Three types of graphitic shelled-magnetic core (Fe, Fe/Co, and Co) nanoparticles (named as C-Fe, C-Fe/Co, and C-Co NPs) were synthesized by radio frequency-catalytic chemical vapor deposition (RF-cCVD). X-ray diffraction and X-ray photoelectron spectroscopy analysis revealed that the cores inside the carbon shells of these NPs were preserved in their metallic states. Fluorescence microscopy images indicated effective penetrations of the NPs through the cellular membranes of cultured cancer HeLa cells, both inside the cytoplasm and the nucleus. Low RF radiation of 350 kHz induced localized heating of the magnetic NPs, which triggered cell death. Apoptosis inducement was found to be dependent on the RF irradiation time and NP concentration. It was showed that the Fe-C NPs had a much higher ability of killing the cancer cells (over 99%) compared with the other types of NPs (C-Co or C-Fe/Co), even at a very low concentration of 0.83 microg/mL. The localized heating of NPs inside the cancer cells comes from the hysteresis heating and resistive heating through eddy currents generated under the RF radiation. The RF thermal ablation properties of the magnetic NPs were correlated with the analysis provided by a superconducting quantum interference device (SQUID).


Assuntos
Carbono/química , Sobrevivência Celular/efeitos da radiação , Hipertermia Induzida/métodos , Nanoestruturas/uso terapêutico , Carbono/efeitos da radiação , Campos Eletromagnéticos , Células HeLa , Humanos , Magnetismo
4.
ACS Nano ; 3(6): 1407-14, 2009 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-19456166

RESUMO

Photovoltaic conversion was achieved from high-density p-n heterojunctions between single-wall carbon nanotubes (SWNTs) and n-type crystalline silicon produced with a simple airbrushing technique. The semitransparent SWNT network coating on n-type silicon substrate forms p-n heterojunctions and exhibits rectifying behavior. Under illumination the numerous heterojunctions formed between substrate generate electron-hole pairs, which are then split and transported through SWNTs (holes) and n-Si (electrons), respectively. The nanotubes serve as both photogeneration sites and a charge carriers collecting and transport layer. Chemical modification by thionyl chloride of the SWNT coating films was found to significantly increase the conversion efficiency by more than 50% through adjusting the Fermi level and increasing the carrier concentration and mobility. Initial tests have shown a power conversion efficiency of above 4%, proving that SOCl(2) treated-SWNT/n-Si configuration is suitable for light-harvesting at relatively low cost.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...