Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale Res Lett ; 12(1): 324, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28476082

RESUMO

Hafnium oxide (HfO2) thin films have attracted much attention owing to their usefulness in equivalent oxide thickness scaling in microelectronics, which arises from their high dielectric constant and thermodynamic stability with silicon. However, the surface passivation properties of such films, particularly on crystalline silicon (c-Si), have rarely been reported upon. In this study, the HfO2 thin films were deposited on c-Si substrates with and without oxygen plasma pretreatments, using a remote plasma atomic layer deposition system. Post-annealing was performed using a rapid thermal processing system at different temperatures in N2 ambient for 10 min. The effects of oxygen plasma pretreatment and post-annealing on the properties of the HfO2 thin films were investigated. They indicate that the in situ remote plasma pretreatment of Si substrate can result in the formation of better SiO2, resulting in a better chemical passivation. The deposited HfO2 thin films with oxygen plasma pretreatment and post-annealing at 500 °C for 10 min were effective in improving the lifetime of c-Si (original lifetime of 1 µs) to up to 67 µs.

2.
Materials (Basel) ; 9(7)2016 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-28773674

RESUMO

The passivated emitter and rear cell (PERC) concept is one of the most promising technologies for increasing crystalline silicon solar cell efficiency. Instead of using the traditional laser ablation process, this paper demonstrates spin-coated polystyrene spheres (PS) to create local openings on the rear side of PERCs. Effects of PS concentration and post-annealing temperature on PERC performance are investigated. The experimental results show that the PS are randomly distributed on wafers and no PS are joined together at a spin rate of 2000 rpm. The PS can be removed at a temperature of 350 °C, leaving holes on the passivation layers without damaging the wafer surfaces. As compared to the laser opening technique with the same contact fraction, the PS opening technique can yield a higher minority effective lifetime, a higher implied open-circuit voltage, and a slightly higher short-circuit current. Although the fill factor of the PS opening technique is lower owing to non-optimized distribution of the openings, the conversion efficiency of the devices is comparable to that of devices prepared via the laser opening process.

3.
Nanoscale Res Lett ; 10: 93, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25852389

RESUMO

Currently, aluminum oxide stacked with silicon nitride (Al2O3/SiNx:H) is a promising rear passivation material for high-efficiency P-type passivated emitter and rear cell (PERC). It has been indicated that atomic layer deposition system (ALD) is much more suitable to prepare high-quality Al2O3 films than plasma-enhanced chemical vapor deposition system and other process techniques. In this study, an ultrafast, non-vacuum spatial ALD with the deposition rate of around 10 nm/min, developed by our group, is hired to deposit Al2O3 films. Upon post-annealing for the Al2O3 films, the unwanted delamination, regarded as blisters, was found by an optical microscope. This may lead to a worse contact within the Si/Al2O3 interface, deteriorating the passivation quality. Thin stoichiometric silicon dioxide films prepared on the Si surface prior to Al2O3 fabrication effectively reduce a considerable amount of blisters. The residual blisters can be further out-gassed when the Al2O3 films are thinned to 8 nm and annealed above 650°C. Eventually, the entire PERC with the improved triple-layer SiO2/Al2O3/SiNx:H stacked passivation film has an obvious gain in open-circuit voltage (V oc) and short-circuit current (J sc) because of the increased minority carrier lifetime and internal rear-side reflectance, respectively. The electrical performance of the optimized PERC with the V oc of 0.647 V, J sc of 38.2 mA/cm(2), fill factor of 0.776, and the efficiency of 19.18% can be achieved.

4.
Nanoscale Res Lett ; 7(1): 372, 2012 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-22768847

RESUMO

One-dimensional pure zinc oxide (ZnO) and Y-doped ZnO nanorod arrays have been successfully fabricated on the silicon substrate for comparison by a simple hydrothermal process at the low temperature of 90°C. The Y-doped nanorods exhibit the same c-axis-oriented wurtzite hexagonal structure as pure ZnO nanorods. Based on the results of photoluminescence, an enhancement of defect-induced green-yellow visible emission is observed for the Y-doped ZnO nanorods. The decrease of E2(H) mode intensity and increase of E1(LO) mode intensity examined by the Raman spectrum also indicate the increase of defects for the Y-doped ZnO nanorods. As compared to pure ZnO nanorods, Y-doped ZnO nanorods show a remarked increase of saturation magnetization. The combination of visible photoluminescence and ferromagnetism measurement results indicates the increase of oxygen defects due to the Y doping which plays a crucial role in the optical and magnetic performances of the ZnO nanorods.

5.
Nanoscale Res Lett ; 7(1): 260, 2012 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-22607485

RESUMO

Aligned ZnO nanowires with different lengths (1 to approximately 4 µm) have been deposited on indium titanium oxide-coated glass substrates by using the solution phase deposition method for application as a work electrode in dye-sensitized solar cells (DSSC). From the results, the increases in length of zinc oxide (ZnO) nanowires can increase adsorption of the N3 dye through ZnO nanowires to improve the short-circuit photocurrent (Jsc) and open-circuit voltage (Voc), respectively. However, the Jsc and Voc values of DSSC with ZnO nanowires length of 4.0 µm (4.8 mA/cm2 and 0.58 V) are smaller than those of DSSC with ZnO nanowires length of 3.0 µm (5.6 mA/cm2 and 0.62 V). It could be due to the increased length of ZnO nanowires also resulted in a decrease in the transmittance of ZnO nanowires thus reducing the incident light intensity on the N3 dye. Optimum power conversion efficiency (η) of 1.49% was obtained in a DSSC with the ZnO nanowires length of 3 µm.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...