Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sens Actuators B Chem ; 390: 133960, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37193120

RESUMO

The COVID-19 pandemic has become a global catastrophe, affecting the health and economy of the human community. It is required to mitigate the impact of pandemics by developing rapid molecular diagnostics for SARS-CoV-2 virus detection. In this context, developing a rapid point-of-care (POC) diagnostic test is a holistic approach to the prevention of COVID-19. In this context, this study aims at presenting a real-time, biosensor chip for improved molecular diagnostics including recombinant SARS-CoV-2 spike glycoprotein and SARS-CoV-2 pseudovirus detection based on one-step-one-pot hydrothermally derived CoFeBDCNH2-CoFe2O4 MOF-nanohybrids. This study was tested on a PalmSens-EmStat Go POC device, showing a limit of detection (LOD) for recombinant SARS-CoV-2 spike glycoprotein of 6.68 fg/mL and 6.20 fg/mL in buffer and 10% serum-containing media, respectively. To validate virus detection in the POC platform, an electrochemical instrument (CHI6116E) was used to perform dose dependent studies under similar experimental conditions to the handheld device. The results obtained from these studies were comparable indicating the capability and high detection electrochemical performance of MOF nanocomposite derived from one-step-one-pot hydrothermal synthesis for SARS-CoV-2 detection for the first time. Further, the performance of the sensor was tested in the presence of Omicron BA.2 and wild-type D614G pseudoviruses.

2.
J Biol Chem ; 299(4): 103028, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36805339

RESUMO

The emergence of SARS-CoV-2, which is responsible for the COVID-19 pandemic, has highlighted the need for rapid characterization of viral mechanisms associated with cellular pathogenesis. Viral UTRs represent conserved genomic elements that contribute to such mechanisms. Structural details of most CoV UTRs are not available, however. Experimental approaches are needed to allow for the facile generation of high-quality viral RNA tertiary structural models, which can facilitate comparative mechanistic efforts. By integrating experimental and computational techniques, we herein report the efficient characterization of conserved RNA structures within the 5'UTR of the HCoV-OC43 genome, a lab-tractable model coronavirus. We provide evidence that the 5'UTR folds into a structure with well-defined stem-loops (SLs) as determined by chemical probing and direct detection of hydrogen bonds by NMR. We combine experimental base-pair restraints with global structural information from SAXS to generate a 3D model that reveals that SL1-4 adopts a topologically constrained structure wherein SLs 3 and 4 coaxially stack. Coaxial stacking is mediated by short linker nucleotides and allows SLs 1 to 2 to sample different cojoint orientations by pivoting about the SL3,4 helical axis. To evaluate the functional relevance of the SL3,4 coaxial helix, we engineered luciferase reporter constructs harboring the HCoV-OC43 5'UTR with mutations designed to abrogate coaxial stacking. Our results reveal that the SL3,4 helix intrinsically represses translation efficiency since the destabilizing mutations correlate with increased luciferase expression relative to wildtype without affecting reporter mRNA levels, thus highlighting how the 5'UTR structure contributes to the viral mechanism.


Assuntos
Regiões 5' não Traduzidas , Coronavirus Humano OC43 , RNA Viral , Coronavirus Humano OC43/genética , Luciferases/genética , Espalhamento a Baixo Ângulo , Difração de Raios X , RNA Viral/genética
3.
Microbes Infect ; 25(1-2): 105044, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36096357

RESUMO

The World Health Organization has highlighted the importance of an international standard (IS) for severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) neutralizing antibody titer detection to calibrate diagnostic techniques. We applied an IS to calibrate neutralizing antibody titers (NTs) (international units/mL) in response to coronavirus disease 2019 (COVID-19) vaccination. Moreover, the association between different factors and neutralizing antibodies was analyzed. A total of 1667 serum samples were collected from participants receiving different COVID-19 vaccines. Antibody titers were determined by a microneutralization assay using live viruses in a biosafety level 3 (BSL-3) laboratory and a commercial serological MeDiPro kit. The titer determined using the MeDiPro kit was highly correlated with the NT determined using live viruses and calibrated using IS. Fever and antipyretic analgesic treatment were related to neutralizing antibody responses in ChAdOx1-S and BNT162b2 vaccinations. Individuals with diabetes showed a low NT elicited by MVC-COV1901. Individuals with hypertension receiving the BNT162b2 vaccine had lower NTs than those without hypertension. Our study provided the international unit (IU) values of NTs in vaccinated individuals for the development of vaccines and implementation of non-inferiority trials. Correlation of the influencing factors with NTs can provide an indicator for selecting COVID-19 vaccines based on personal attributes.


Assuntos
COVID-19 , Hipertensão , Humanos , Vacinas contra COVID-19 , Vacina BNT162 , COVID-19/prevenção & controle , SARS-CoV-2 , Anticorpos Neutralizantes , Vacinação , Anticorpos Antivirais
4.
J Clin Virol ; 157: 105328, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36399969

RESUMO

OBJECTIVES: We conducted a single-blinded, randomized trial to evaluate the safety, reactogenicity, and immunogenicity of heterologous booster vaccination in health care workers (HCW) who had received two doses of ChAdOx1 nCov-19. METHODS: HCW who had at least 90 days after the second dose were enrolled to receive one of the four vaccines: BNT162b2 (30 µg), half-dose mRNA-1273 (50 µg), mRNA-1273 (100 µg), and MVC-COV1901 (15 µg). The primary outcomes were humoral and cellular immunogenicity and secondary outcomes assessed safety and reactogenicity at 28 days post-booster. RESULTS: MVC-COV1901 Three hundred and forty HCW were enrolled: 83 received BNT162b2 (2 excluded), 85 half-dose mRNA-1273, 85 mRNA-1273, and 85 MVC-COV1901. mRNA vaccines had more reactogenicity than protein vaccine. The fold-rise of anti-spike IgG geometric mean titer was 8.4 (95% CI 6.8-10.4) for MVC-COV1901, 32.2 (27.2-38.1) for BNT162b2, 47.6 (40.8-55.6) for half-dose mRNA-1273 and 63.2 (53.6-74.6) for mRNA-1273. The live virus microneutralization assays (LVMNA) against the wild type, alpha and delta variants were consistent with anti-spike IgG for all booster vaccines. The LVMNA in the four groups against omicron BA.1 variant were 6.4 to 13.5 times lower than those against the wild type. All booster vaccines induced a comparable T cell response. CONCLUSIONS: Third dose booster not only increases neutralizing antibody titer but also enhances antibody breadth against SARS-CoV-2 variants. mRNA vaccines are preferred booster vaccines for those who received primary series of ChAdOx1 nCov-19.


Assuntos
Anticorpos Neutralizantes , COVID-19 , Humanos , SARS-CoV-2 , ChAdOx1 nCoV-19 , Imunização Secundária , Vacina BNT162 , COVID-19/prevenção & controle , Pessoal de Saúde , Imunoglobulina G , Vacinação
5.
Microbiol Mol Biol Rev ; 86(2): e0002621, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35343760

RESUMO

Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The global COVID-19 pandemic continues to threaten the lives of hundreds of millions of people, with a severe negative impact on the global economy. Although several COVID-19 vaccines are currently being administered, none of them is 100% effective. Moreover, SARS-CoV-2 variants remain an important worldwide public health issue. Hence, the accelerated development of efficacious antiviral agents is urgently needed. Coronavirus depends on various host cell factors for replication. An ongoing research objective is the identification of host factors that could be exploited as targets for drugs and compounds effective against SARS-CoV-2. In the present review, we discuss the molecular mechanisms of SARS-CoV-2 and related coronaviruses, focusing on the host factors or pathways involved in SARS-CoV-2 replication that have been identified by genome-wide CRISPR screening.


Assuntos
COVID-19 , SARS-CoV-2 , Antivirais/farmacologia , Antivirais/uso terapêutico , Vacinas contra COVID-19 , Humanos , Pandemias/prevenção & controle , SARS-CoV-2/genética
6.
mSphere ; 7(1): e0088321, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35107336

RESUMO

Considering the urgent demand for faster methods to quantify neutralizing antibody titers in patients with coronavirus (CoV) disease 2019 (COVID-19), developing an analytical model or method to replace the conventional virus neutralization test (NT) is essential. Moreover, a "COVID-19 immunity passport" is currently being proposed as a certification for people who travel internationally. Therefore, an enzyme-linked immunosorbent assay (ELISA) was designed to detect severe acute respiratory syndrome CoV 2 (SARS-CoV-2)-neutralizing antibodies in serum, which is based on the binding affinity of SARS-CoV-2 viral spike protein 1 (S1) and the viral spike protein receptor-binding domain (RBD) to antibodies. The RBD is considered the major binding region of neutralizing antibodies. Furthermore, S1 covers the RBD and several other regions, which are also important for neutralizing antibody binding. In this study, we assessed 144 clinical specimens, including those from patients with PCR-confirmed SARS-CoV-2 infections and healthy donors, using both the NT and ELISA. The ELISA results analyzed by spline regression and the two-variable generalized additive model precisely reflected the NT value, and the correlation between predicted and actual NT values was as high as 0.917. Therefore, our method serves as a surrogate to quantify neutralizing antibody titer. The analytic method and platform used in this study present a new perspective for serological testing of SARS-CoV-2 infection and have clinical potential to assess vaccine efficacy. IMPORTANCE Herein, we present a new approach for serological testing for SARS-CoV-2 antibodies using innovative laboratory methods that demonstrate a combination of biology and mathematics. The traditional virus neutralization test is the gold standard method; however, it is time-consuming and poses a risk to medical personnel. Thus, there is a demand for methods that rapidly quantify neutralizing antibody titers in patients with COVID-19 or examine vaccine efficacy at a biosafety level 2 containment facility. Therefore, we used a two-variable generalized additive model to analyze the results of the enzyme-linked immunosorbent assay and found the method to serve as a surrogate to quantify neutralizing antibody titers. This methodology has potential for clinical use in assessing vaccine efficacy.


Assuntos
Anticorpos Neutralizantes/sangue , COVID-19/imunologia , Ensaio de Imunoadsorção Enzimática , Modelos Imunológicos , Modelos Estatísticos , Testes de Neutralização/métodos , SARS-CoV-2/imunologia , Biomarcadores/sangue , COVID-19/sangue , COVID-19/diagnóstico , Estudos de Casos e Controles , Humanos , Análise de Regressão
7.
mBio ; 13(1): e0271721, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35038927

RESUMO

Enterovirus infections can cause severe complications, such as poliomyelitis, encephalitis, myocarditis, meningitis, neurological pulmonary edema, and even death. Here, we used genome-wide CRISPR screens to gain new insight into the mechanism by which enteroviruses co-opt host pathways to potentiate replication and propagation. We found that acyl-coenzyme A synthetase long-chain family member 4 (ACSL4) is involved in viral replication organelle formation. ACSL4 is a key component of ferroptosis, an iron-dependent, nonapoptotic programmed cell death. Our results indicated that enteroviruses and coronaviruses can induce ferroptosis via ACSL4. Most importantly, ferroptosis inhibitors, including two FDA-approved drugs, rosiglitazone (ROSI; ACSL4 inhibitor) and pioglitazone (PIO; ACSL4 inhibitor), decreased the viral load of human enteroviruses and coronaviruses, suggesting that ACSL4 is a target for counteracting viral infection. IMPORTANCE We provide the first evidence for the role of ACSL4 in enterovirus replication organelle formation. Moreover, both enteroviruses and coronaviruses induce ferroptosis via ACSL4. These findings establish a novel regulatory mechanism for viral replication. The inhibition of ACSL4 by ferroptosis inhibitors can reduce viral yields of enteroviruses and coronaviruses, including SARS-CoV-2, implying that ACSL4-mediated ferroptosis is a promising therapeutic target for viral diseases.


Assuntos
COVID-19 , Infecções por Enterovirus , Enterovirus , Ferroptose , Humanos , Coenzima A Ligases/metabolismo , SARS-CoV-2/metabolismo , Replicação Viral , Organelas/metabolismo
9.
mSphere ; 6(2)2021 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-33789940

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) carrying the D614G mutation on the spike protein is the predominant circulating variant and is associated with enhanced infectivity. However, whether this dominant variant can potentially spread through the cold chain and whether the spike protein affects virus stability after cold storage remain unclear. To compare the infectivity of two SARS-CoV-2 variants, namely, SARS-CoV-2 variants with spike protein with the D614 mutation (S-D614) and G614 mutation (S-G614), after different periods of refrigeration (4°C) and freezing (-20°C). We also determined the integrity of the viral RNA and the ability of the spike protein to bind angiotensin-converting enzyme 2 (ACE2) after storage at these conditions. The results showed that SARS-CoV-2 was more stable and infectious after storage at -20°C than at 4°C. Particularly, the S-G614 variant was found to be more stable than the S-D614 variant. The spike protein of the S-G614 variant had better binding ability with the ACE2 receptor than that of the S-D614 variant after storage at -20°C for up to 30 days. Our findings revealed that SARS-CoV-2 remains stable and infectious after refrigeration or freezing, and their stability and infectivity up to 30 days depends on the spike variant. Stability and infectivity are related to each other, and the higher stability of S-G614 compared to that of S-D614 may contribute to rapid viral spread of the S-G614 variant.IMPORTANCE It has been observed that variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are more stable and infectious after storage at -20°C than at 4°C. A SARS-CoV-2 S-D614G variant is currently the most dominant variant in circulation and is associated with enhanced infectivity. We compared the stability of two SARS-CoV-2 variants: the early S-D614 variant carrying the D614 spike protein and the new S-G614 variant carrying the G614 spike protein, stored at both 4°C and -20°C for different periods. We observed that SARS-CoV-2 remains stable and infectious after refrigeration or freezing, which further depends on the spike variant, that is, the ability of the spike protein to bind with the ACE2 receptor with higher efficiency. The high stability of the S-G614 variant also explains its rapid spread and infectivity. Therefore, precautions should be taken during and after handling food preserved under cold conditions.


Assuntos
COVID-19 , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Temperatura Baixa , Aptidão Genética/genética , Humanos , Mutação , Estabilidade Proteica
10.
Biosens Bioelectron ; 183: 113213, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-33857754

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) enters the cells through the binding of its spike protein (S-protein) to the cell surface-expressing angiotensin-converting enzyme 2 (ACE2). Thus, inhibition of S-protein-ACE2 binding may impede SARS-CoV-2 cell entry and attenuate the progression of Coronavirus disease 2019 (COVID-19). In this study, an electrochemical impedance spectroscopy-based biosensing platform consisting of a recombinant ACE2-coated palladium nano-thin-film electrode as the core sensing element was fabricated for the screening of potential inhibitors against S-protein-ACE2 binding. The platform could detect interference of small analytes against S-protein-ACE2 binding at low analyte concentration and small volume (0.1 µg/mL and ~1 µL, estimated total analyte consumption < 4 pg) within 21 min. Thus, a few potential inhibitors of S-protein-ACE2 binding were identified. This includes (2S,3aS,6aS)-1-((S)-N-((S)-1-Carboxy-3-phenylpropyl)alanyl)tetrahydrocyclopenta[b] pyrrole-2-carboxylic acid (ramiprilat) and (2S,3aS,7aS)-1-[(2S)-2-[[(2S)-1-Carboxybutyl]amino]propanoyl]-2,3,3a,4,5,6,7,7a-octahydroindole-2-carboxylic acid (perindoprilat) that reduced the binding affinity of S-protein to ACE2 by 72% and 67%; and SARS-CoV-2 in vitro infectivity to the ACE2-expressing human oral cavity squamous carcinoma cells (OEC-M1) by 36.4 and 20.1%, respectively, compared to the PBS control. These findings demonstrated the usefulness of the developed biosensing platform for the rapid screening of modulators for S-protein-ACE2 binding.


Assuntos
Técnicas Biossensoriais , COVID-19 , Espectroscopia Dielétrica , Humanos , Ligação Proteica , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus
11.
Artigo em Inglês | MEDLINE | ID: mdl-32669265

RESUMO

The coronavirus (CoV) disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome CoV-2 (SARS-CoV-2) is a health threat worldwide. Viral main protease (Mpro, also called 3C-like protease [3CLpro]) is a therapeutic target for drug discovery. Herein, we report that GC376, a broad-spectrum inhibitor targeting Mpro in the picornavirus-like supercluster, is a potent inhibitor for the Mpro encoded by SARS-CoV-2, with a half-maximum inhibitory concentration (IC50) of 26.4 ± 1.1 nM. In this study, we also show that GC376 inhibits SARS-CoV-2 replication with a half-maximum effective concentration (EC50) of 0.91 ± 0.03 µM. Only a small portion of SARS-CoV-2 Mpro was covalently modified in the excess of GC376 as evaluated by mass spectrometry analysis, indicating that improved inhibitors are needed. Subsequently, molecular docking analysis revealed that the recognition and binding groups of GC376 within the active site of SARS-CoV-2 Mpro provide important new information for the optimization of GC376. Given that sufficient safety and efficacy data are available for GC376 as an investigational veterinary drug, expedited development of GC376, or its optimized analogues, for treatment of SARS-CoV-2 infection in human is recommended.


Assuntos
Antivirais/química , Betacoronavirus/efeitos dos fármacos , Cisteína Endopeptidases/química , Inibidores de Proteases/química , Pirrolidinas/química , Proteínas não Estruturais Virais/química , Motivos de Aminoácidos , Animais , Antivirais/farmacologia , Betacoronavirus/patogenicidade , Domínio Catalítico , Chlorocebus aethiops , Proteases 3C de Coronavírus , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/metabolismo , Expressão Gênica , Simulação de Acoplamento Molecular , Inibidores de Proteases/farmacologia , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Pirrolidinas/farmacologia , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , SARS-CoV-2 , Ácidos Sulfônicos , Termodinâmica , Células Vero , Proteínas não Estruturais Virais/antagonistas & inibidores , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , Replicação Viral/efeitos dos fármacos
12.
Biochem Biophys Rep ; 24: 100860, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34095549

RESUMO

Frequent outbreaks of enterovirus A71 (EVA71) occur in the Asia-Pacific area, and these are closely associated with severe neurological symptoms in young children. No effective antiviral therapy is currently available for the treatment of EVA71 infection. The development of monoclonal antibodies (mAbs) has demonstrated promise as a novel therapy for the prevention and treatment of infectious diseases. Several medical conditions have been treated using bispecific or multi-specific antibodies that recognize two or more distinct epitopes simultaneously. However, bispecific or multi-specific antibodies often encounter protein expression and product stability problems. In this study, we developed an IgG-like bispecific antibody (E18-F1) comprising two anti-EVA71 antibodies: E18 mAb and llama-derived F1 single-domain antibody. E18-F1 was demonstrated to exhibit superior binding affinity and antiviral activity compared with E18 or F1. Additionally, E18-F1 not only improved survival rate, but also reduced clinical signs in human SCARB2 receptor (hSCARB2) transgenic mice challenged with a lethal dose of EVA71. Altogether, our results reveal that E18-F1 is a simple format bispecific antibody with promising antiviral activity for EVA71.

13.
J Biomed Sci ; 26(1): 65, 2019 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-31481071

RESUMO

Enterovirus A71 (EV-A71) is an important emerging virus posing a threat to children under five years old. EV-A71 infection in infants or young children can cause hand-foot-and-mouth disease, herpangina, or severe neurological complications. However, there are still no effective antivirals for treatment of these infections. In this review, we summarize the antiviral compounds developed to date based on various targets of the EV-A71 life cycle. Moreover, development of a vaccine would be the most effective approach to prevent EV-A71 infection. Therefore, we also summarize the development and clinical progress of various candidate EV-A71 vaccines, including inactivated whole virus, recombinant VP1 protein, synthetic peptides, viral-like particles, and live attenuated vaccines.


Assuntos
Antivirais/uso terapêutico , Enterovirus Humano A/imunologia , Infecções por Enterovirus/terapia , Vacinas Virais/uso terapêutico , Animais , Humanos , Camundongos
14.
Nucleic Acids Res ; 45(1): 271-287, 2017 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-27899653

RESUMO

Cells and viruses can utilize internal ribosome entry sites (IRES) to drive translation when cap-dependent translation is inhibited by stress or viral factors. IRES trans-acting factors (ITAFs) are known to participate in such cap-independent translation, but there are gaps in the understanding as to how ITAFs, particularly negative ITAFs, regulate IRES-driven translation. This study found that Lys109, Lys121 and Lys122 represent critical ubiquitination sites for far upstream element-binding protein 2 (KHSRP, also known as KH-type splicing regulatory protein or FBP2), a negative ITAF. Mutations at these sites subsequently reduced KHSRP ubiquitination and abolished its inhibitory effect on IRES-driven translation. We further found that interaction between the Kelch domain of Kelch-like protein 12 (KLHL12) and the C-terminal domain of KHSRP contributed to KHSRP ubiquitination, leading to downregulation of enterovirus IRES-mediated translation in infected cells and increased competition against other positive ITAFs. Together, these results show that ubiquitination can exert control over IRES-driven translation via modification of ITAFs, and to the best of our knowledge, this is the first description of such a regulatory mechanism for IRES-dependent translation.


Assuntos
Enterovirus/genética , Interações Hospedeiro-Patógeno , Proteínas dos Microfilamentos/genética , Células Musculares/metabolismo , Biossíntese de Proteínas , Proteínas de Ligação a RNA/genética , Transativadores/genética , Proteínas Adaptadoras de Transdução de Sinal , Linhagem Celular Tumoral , Enterovirus/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Células HEK293 , Humanos , Sítios Internos de Entrada Ribossomal , Lisina/metabolismo , Proteínas dos Microfilamentos/metabolismo , Células Musculares/virologia , Mutação , Domínios Proteicos , Proteínas de Ligação a RNA/metabolismo , Ribossomos/química , Ribossomos/metabolismo , Transdução de Sinais , Transativadores/metabolismo , Ubiquitinação
15.
PLoS Pathog ; 12(10): e1005959, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27780225

RESUMO

The 5' untranslated region (5' UTR) of the enterovirus 71 (EV71) RNA genome contains an internal ribosome entry site (IRES) that is indispensable for viral protein translation. Due to the limited coding capacity of their RNA genomes, EV71 and other picornaviruses typically recruit host factors, known as IRES trans-acting factors (ITAFs), to mediate IRES-dependent translation. Here, we show that EV71 viral proteinase 2A is capable of cleaving far upstream element-binding protein 1 (FBP1), a positive ITAF that directly binds to the EV71 5' UTR linker region to promote viral IRES-driven translation. The cleavage occurs at the Gly-371 residue of FBP1 during the EV71 infection process, and this generates a functional cleavage product, FBP11-371. Interestingly, the cleavage product acts to promote viral IRES activity. Footprinting analysis and gel mobility shift assay results showed that FBP11-371 similarly binds to the EV71 5' UTR linker region, but at a different site from full-length FBP1; moreover, FBP1 and FBP11-371 were found to act additively to promote IRES-mediated translation and virus yield. Our findings expand the current understanding of virus-host interactions with regard to viral recruitment and modulation of ITAFs, and provide new insights into translational control during viral infection.


Assuntos
DNA Helicases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Enterovirus Humano A , Regulação Viral da Expressão Gênica/fisiologia , Interações Hospedeiro-Parasita/fisiologia , Sítios Internos de Entrada Ribossomal/fisiologia , Proteínas Virais/metabolismo , Regiões 5' não Traduzidas/fisiologia , Linhagem Celular Tumoral , Ensaio de Desvio de Mobilidade Eletroforética , Humanos , Immunoblotting , Imunoprecipitação , Sítios Internos de Entrada Ribossomal/genética , Biossíntese de Proteínas/fisiologia , Proteínas de Ligação a RNA
16.
Nucleic Acids Res ; 42(20): 12789-805, 2014 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-25352551

RESUMO

The roles of virus-derived small RNAs (vsRNAs) have been studied in plants and insects. However, the generation and function of small RNAs from cytoplasmic RNA viruses in mammalian cells remain unexplored. This study describes four vsRNAs that were detected in enterovirus 71-infected cells using next-generation sequencing and northern blots. Viral infection produced substantial levels (>10(5) copy numbers per cell) of vsRNA1, one of the four vsRNAs. We also demonstrated that Dicer is involved in vsRNA1 generation in infected cells. vsRNA1 overexpression inhibited viral translation and internal ribosomal entry site (IRES) activity in infected cells. Conversely, blocking vsRNA1 enhanced viral yield and viral protein synthesis. We also present evidence that vsRNA1 targets stem-loop II of the viral 5' untranslated region and inhibits the activity of the IRES through this sequence-specific targeting. Our study demonstrates the ability of a cytoplasmic RNA virus to generate functional vsRNA in mammalian cells. In addition, we also demonstrate a potential novel mechanism for a positive-stranded RNA virus to regulate viral translation: generating a vsRNA that targets the IRES.


Assuntos
Regiões 5' não Traduzidas , Enterovirus Humano A/genética , Regulação Viral da Expressão Gênica , Biossíntese de Proteínas , Pequeno RNA não Traduzido/metabolismo , RNA Viral/metabolismo , Linhagem Celular Tumoral , Regulação para Baixo , Humanos , Ribonuclease III/metabolismo , Proteínas Virais/biossíntese
17.
Expert Opin Biol Ther ; 14(10): 1455-64, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24989170

RESUMO

INTRODUCTION: Enterovirus 71 (EV71) is an etiological agent that causes severe neurological complications in children. EV71 outbreaks have occurred throughout the Asia-Pacific region, posing a severe global public health threat; however, no specific therapeutic strategy exists for treating EV71-infected children. AREAS COVERED: Five manufacturers have produced inactivated EV71 whole virus vaccines in mainland China, Taiwan, and Singapore, which have completed Phase III (mainland China) and Phase I (Taiwan and Singapore) clinical trials. Various EV71 vaccine candidates are being researched in animal models, including live-attenuated virus vaccine, recombinant VP1 vaccine, VP1-based DNA vaccine, synthetic peptide vaccine and virus-like particle vaccine. In this review, the present situation is summarized, and feasible improvements to the EV71 vaccine are explored. EXPERT OPINION: Although inactivated EV71 vaccines are safe, efficient and elicit strong immune responses to protect adults, children and infants against infection, the quality control of production is critical.


Assuntos
Enterovirus Humano A/imunologia , Infecções por Enterovirus/prevenção & controle , Vacinas Virais/administração & dosagem , Animais , Humanos , Vacinas Atenuadas/imunologia , Vacinas de Produtos Inativados/imunologia , Vacinas Sintéticas/imunologia
18.
J Virol ; 87(7): 3828-38, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23345520

RESUMO

Far-upstream element-binding protein 2 (FBP2) is an internal ribosomal entry site (IRES) trans-acting factor (ITAF) that negatively regulates enterovirus 71 (EV71) translation. This study shows that EV71 infection cleaved FBP2. Live EV71 and the EV71 replicon (but not UV-inactivated virus particles) induced FBP2 cleavage, suggesting that viral replication results in FBP2 cleavage. The results also showed that virus-induced proteasome, autophagy, and caspase activity co-contribute to EV71-induced FBP2 cleavage. Using FLAG-fused FBP2, we mapped the potential cleavage fragments of FBP2 in infected cells. We also found that FBP2 altered its function when its carboxyl terminus was cleaved. This study presents a mechanism for virus-induced cellular events to cleave a negative regulator for viral IRES-driven translation.


Assuntos
Enterovirus Humano A/metabolismo , Infecções por Enterovirus/metabolismo , Biossíntese de Proteínas/fisiologia , Proteínas de Ligação a RNA/metabolismo , Transativadores/metabolismo , Internalização do Vírus , Western Blotting , Linhagem Celular Tumoral , Humanos , Plasmídeos/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , RNA Interferente Pequeno/genética , Replicação Viral/fisiologia
19.
Nucleic Acids Res ; 39(22): 9633-48, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21880596

RESUMO

Enterovirus 71 (EV71) is associated with severe neurological disorders in children, and has been implicated as the infectious agent in several large-scale outbreaks with mortalities. Upon infection, the viral RNA is translated in a cap-independent manner to yield a large polyprotein precursor. This mechanism relies on the presence of an internal ribosome entry site (IRES) element within the 5'-untranslated region. Virus-host interactions in EV71-infected cells are crucial in assisting this process. We identified a novel positive IRES trans-acting factor, far upstream element binding protein 1 (FBP1). Using binding assays, we mapped the RNA determinants within the EV71 IRES responsible for FBP1 binding and mapped the protein domains involved in this interaction. We also demonstrated that during EV71 infection, the nuclear protein FBP1 is enriched in cytoplasm where viral replication occurs. Moreover, we showed that FBP1 acts as a positive regulator of EV71 replication by competing with negative ITAF for EV71 IRES binding. These new findings may provide a route to new anti-viral therapy.


Assuntos
Regiões 5' não Traduzidas , DNA Helicases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Enterovirus Humano A/genética , Biossíntese de Proteínas , Proteínas de Ligação a RNA/metabolismo , Animais , Ligação Competitiva , Linhagem Celular , Citoplasma/metabolismo , DNA Helicases/antagonistas & inibidores , DNA Helicases/química , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/química , Enterovirus Humano A/crescimento & desenvolvimento , Enterovirus Humano A/fisiologia , Técnicas de Silenciamento de Genes , Humanos , Domínios e Motivos de Interação entre Proteínas , RNA Viral/química , RNA Viral/metabolismo , Proteínas de Ligação a RNA/antagonistas & inibidores , Proteínas de Ligação a RNA/química , Transativadores/metabolismo , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...