Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
J Biotechnol ; 389: 43-60, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38616038

RESUMO

Flavors and fragrances are an important class of specialty chemicals for which interest in biomanufacturing has risen during recent years. These naturally occurring compounds are often amenable to biosynthesis using purified enzyme catalysts or metabolically engineered microbial cells in fermentation processes. In this review, we provide a brief overview of the categories of molecules that have received the greatest interest, both academically and industrially, by examining scholarly publications as well as patent literature. Overall, we seek to highlight innovations in the key reaction steps and microbial hosts used in flavor and fragrance manufacturing.


Assuntos
Aromatizantes , Engenharia Metabólica , Aromatizantes/metabolismo , Aromatizantes/química , Bactérias/metabolismo , Bactérias/genética , Bactérias/enzimologia , Perfumes , Odorantes/análise , Fermentação
3.
Curr Opin Biotechnol ; 86: 103093, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38417202

RESUMO

Polymeric materials are ubiquitous to modern life. However, reliance of petroleum for polymeric building blocks is not sustainable. The synthesis of macromolecules from recalcitrant polymer waste feedstocks, such as plastic waste and lignocellulosic biomass, presents an opportunity to bypass the use of petroleum-based feedstocks. However, the deconstruction and transformation of these alternative feedstocks remained limited until recently. Herein, we highlight examples of monomers liberated from the deconstruction of recalcitrant polymers, and more extensively, we showcase the state-of-the-art in biocatalytic technologies that are enabling synthesis of diverse upcycled monomeric starting materials for a wide variety of macromolecules. Overall, this review emphasizes the importance of functional group interconversion as a promising strategy by which biocatalysis can aid the diversification and upcycling of monomers.


Assuntos
Petróleo , Polímeros , Biocatálise , Biomassa
4.
Biotechnol Bioeng ; 121(2): 593-604, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37986639

RESUMO

The selective introduction of amine groups within deconstruction products of lignin could provide an avenue for valorizing waste biomass while achieving a green synthesis of industrially relevant building blocks from sustainable sources. Here, we built and characterized enzyme cascades that create aldehydes and subsequently primary amines from diverse lignin-derived carboxylic acids using a carboxylic acid reductase (CAR) and an ω-transaminase (TA). Unlike previous studies that have paired CAR and TA enzymes, here we examine multiple homologs of each of these enzymes and a broader set of candidate substrates. In addition, we compare the performance of these systems in cell-free and resting whole-cell biocatalysis formats using the conversion of vanillate to vanillyl amine as model chemistry. We also demonstrate that resting whole cells can be recycled for multiple batch reactions. We used the knowledge gained from this study to produce several amines from carboxylic acid precursors using one-pot biocatalytic reactions, several of which we report for the first time. These results expand our knowledge of these industrially relevant enzyme families to new substrates and contexts for environmentally friendly and potentially low-cost synthesis of diverse aryl aldehydes and amines.


Assuntos
Aminas , Lignina , Aminação , Aminas/química , Ácidos Carboxílicos , Aldeídos , Biocatálise
5.
Commun Biol ; 6(1): 929, 2023 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-37696954

RESUMO

Beta-hydroxy non-standard amino acids (ß-OH-nsAAs) have utility as small molecule drugs, precursors for beta-lactone antibiotics, and building blocks for polypeptides. While the L-threonine transaldolase (TTA), ObiH, is a promising enzyme for ß-OH-nsAA biosynthesis, little is known about other natural TTA sequences. We ascertained the specificity of the TTA enzyme class more comprehensively by characterizing 12 candidate TTA gene products across a wide range (20-80%) of sequence identities. We found that addition of a solubility tag substantially enhanced the soluble protein expression level within this difficult-to-express enzyme family. Using an optimized coupled enzyme assay, we identified six TTAs, including one with less than 30% sequence identity to ObiH that exhibits broader substrate scope, two-fold higher L-Threonine (L-Thr) affinity, and five-fold faster initial reaction rates under conditions tested. We harnessed these TTAs for first-time bioproduction of ß-OH-nsAAs with handles for bio-orthogonal conjugation from supplemented precursors during aerobic fermentation of engineered Escherichia coli, where we observed that higher affinity of the TTA for L-Thr increased titer. Overall, our work reveals an unexpectedly high level of sequence diversity and broad substrate specificity in an enzyme family whose members play key roles in the biosynthesis of therapeutic natural products that could benefit from chemical diversification.


Assuntos
Aminoácidos , Treonina , Transaldolase , Fermentação , Antibacterianos , Escherichia coli/genética
6.
Nat Chem Biol ; 19(7): 911-920, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37188959

RESUMO

The incorporation of the nonstandard amino acid para-nitro-L-phenylalanine (pN-Phe) within proteins has been used for diverse applications, including the termination of immune self-tolerance. However, the requirement for the provision of chemically synthesized pN-Phe to cells limits the contexts where this technology can be harnessed. Here we report the construction of a live bacterial producer of synthetic nitrated proteins by coupling metabolic engineering and genetic code expansion. We achieved the biosynthesis of pN-Phe in Escherichia coli by creating a pathway that features a previously uncharacterized nonheme diiron N-monooxygenase, which resulted in pN-Phe titers of 820 ± 130 µM after optimization. After we identified an orthogonal translation system that exhibited selectivity toward pN-Phe rather than a precursor metabolite, we constructed a single strain that incorporated biosynthesized pN-Phe within a specific site of a reporter protein. Overall, our study has created a foundational technology platform for distributed and autonomous production of nitrated proteins.


Assuntos
Proteínas de Escherichia coli , Nitratos , Nitratos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Fenilalanina/química , Proteínas de Escherichia coli/metabolismo , Aminoácidos/metabolismo
7.
Metab Eng ; 77: 294-305, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37100193

RESUMO

Aldehydes are attractive chemical targets both as end products in the flavors and fragrances industry and as synthetic intermediates due to their propensity for C-C bond formation. Here, we identify and address unexpected oxidation of a model collection of aromatic aldehydes, including many that originate from biomass degradation. When diverse aldehydes are supplemented to E. coli cells grown under aerobic conditions, as expected they are either reduced by the wild-type MG1655 strain or stabilized by a strain engineered for reduced aromatic aldehyde reduction (the E. coli RARE strain). Surprisingly, when these same aldehydes are supplemented to resting cell preparations of either E. coli strain, under many conditions we observe substantial oxidation. By performing combinatorial inactivation of six candidate aldehyde dehydrogenase genes in the E. coli genome using multiplexed automatable genome engineering (MAGE), we demonstrate that this oxidation can be substantially slowed, with greater than 50% retention of 6 out of 8 aldehydes when assayed 4 h after their addition. Given that our newly engineered strain exhibits reduced oxidation and reduction of aromatic aldehydes, we dubbed it the E. coli ROAR strain. We applied the new strain to resting cell biocatalysis for two kinds of reactions - the reduction of 2-furoic acid to furfural and the condensation of 3-hydroxybenzaldehyde and glycine to form a non-standard ß-hydroxy-α-amino acid. In each case, we observed substantial improvements in product titer 20 h after reaction initiation (9-fold and 10-fold, respectively). Moving forward, the use of this strain to generate resting cells should allow aldehyde product isolation, further enzymatic conversion, or chemical reactivity under cellular contexts that better accommodate aldehyde toxicity.


Assuntos
Aldeídos , Escherichia coli , Aldeídos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Oxirredução , Aldeído Desidrogenase/genética , Biocatálise
8.
Trends Biotechnol ; 41(3): 295-297, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36710129

RESUMO

To address limitations in dosing and releasing cargo from engineered microbes, Din et al. harnessed a previously designed oscillatory genetic circuit to achieve the synchronized release of cancer-killing protein payloads. Here, we briefly recap this study published in 2016 and its transformative impact on the field.

9.
Nucleic Acids Res ; 51(D1): D603-D610, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36399496

RESUMO

With an ever-increasing amount of (meta)genomic data being deposited in sequence databases, (meta)genome mining for natural product biosynthetic pathways occupies a critical role in the discovery of novel pharmaceutical drugs, crop protection agents and biomaterials. The genes that encode these pathways are often organised into biosynthetic gene clusters (BGCs). In 2015, we defined the Minimum Information about a Biosynthetic Gene cluster (MIBiG): a standardised data format that describes the minimally required information to uniquely characterise a BGC. We simultaneously constructed an accompanying online database of BGCs, which has since been widely used by the community as a reference dataset for BGCs and was expanded to 2021 entries in 2019 (MIBiG 2.0). Here, we describe MIBiG 3.0, a database update comprising large-scale validation and re-annotation of existing entries and 661 new entries. Particular attention was paid to the annotation of compound structures and biological activities, as well as protein domain selectivities. Together, these new features keep the database up-to-date, and will provide new opportunities for the scientific community to use its freely available data, e.g. for the training of new machine learning models to predict sequence-structure-function relationships for diverse natural products. MIBiG 3.0 is accessible online at https://mibig.secondarymetabolites.org/.


Assuntos
Genoma , Genômica , Família Multigênica , Vias Biossintéticas/genética
10.
Bio Protoc ; 12(17)2022 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-36213107

RESUMO

The incorporation of non-standard amino acids (nsAAs) within proteins and peptides through genetic code expansion introduces novel chemical functionalities such as photo-crosslinking and bioconjugation. Given the utility of Bacillus subtilis in fundamental and applied science, we extended existing nsAA incorporation technology from Escherichia coli into B. subtilis , demonstrating incorporation of 20 unique nsAAs. The nsAAs we succeeded in incorporating within proteins conferred properties that included fluorescence, photo-crosslinking, and metal chelation. Here, we describe the reagents, equipment, and protocols to test for nsAA incorporation at a small scale (96-well plate and culture tube scales). We report specific media requirements for certain nsAAs, including two variants for different media conditions. Our protocol provides a consistent and reproducible method for incorporation of a chemically diverse set of nsAAs into a model Gram-positive organism.

11.
Nat Commun ; 12(1): 5429, 2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34521822

RESUMO

Bacillus subtilis is a model gram-positive bacterium, commonly used to explore questions across bacterial cell biology and for industrial uses. To enable greater understanding and control of proteins in B. subtilis, here we report broad and efficient genetic code expansion in B. subtilis by incorporating 20 distinct non-standard amino acids within proteins using 3 different families of genetic code expansion systems and two choices of codons. We use these systems to achieve click-labelling, photo-crosslinking, and translational titration. These tools allow us to demonstrate differences between E. coli and B. subtilis stop codon suppression, validate a predicted protein-protein binding interface, and begin to interrogate properties underlying bacterial cytokinesis by precisely modulating cell division dynamics in vivo. We expect that the establishment of this simple and easily accessible chemical biology system in B. subtilis will help uncover an abundance of biological insights and aid genetic code expansion in other organisms.


Assuntos
Aminoácidos/genética , Aminoacil-tRNA Sintetases/genética , Bacillus subtilis/genética , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Código Genético , Aminoácidos/química , Aminoácidos/metabolismo , Aminoacil-tRNA Sintetases/classificação , Aminoacil-tRNA Sintetases/metabolismo , Bacillus subtilis/metabolismo , Proteínas de Bactérias/metabolismo , Códon , Citocinese/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Genoma Bacteriano , Ligação Proteica , Biossíntese de Proteínas , Mapeamento de Interação de Proteínas , RNA de Transferência/genética , RNA de Transferência/metabolismo
12.
Sci Adv ; 7(27)2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34215581

RESUMO

Understanding the evolutionary stability and possible context dependence of biological containment techniques is critical as engineered microbes are increasingly under consideration for applications beyond biomanufacturing. While synthetic auxotrophy previously prevented Escherichia coli from exhibiting detectable escape from batch cultures, its long-term effectiveness is unknown. Here, we report automated continuous evolution of a synthetic auxotroph while supplying a decreasing concentration of essential biphenylalanine (BipA). After 100 days of evolution, triplicate populations exhibit no observable escape and exhibit normal growth rates at 10-fold lower BipA concentration than the ancestral synthetic auxotroph. Allelic reconstruction reveals the contribution of three genes to increased fitness at low BipA concentrations. Based on its evolutionary stability, we introduce the progenitor strain directly to mammalian cell culture and observe containment of bacteria without detrimental effects on HEK293T cells. Overall, our findings reveal that synthetic auxotrophy is effective on time scales and in contexts that enable diverse applications.

13.
Artigo em Inglês | MEDLINE | ID: mdl-35540496

RESUMO

Recombination-mediated genetic engineering, also known as recombineering, is the genomic incorporation of homologous single-stranded or double-stranded DNA into bacterial genomes. Recombineering and its derivative methods have radically improved genome engineering capabilities, perhaps none more so than multiplex automated genome engineering (MAGE). MAGE is representative of a set of highly multiplexed single-stranded DNA-mediated technologies. First described in Escherichia coli, both MAGE and recombineering are being rapidly translated into diverse prokaryotes and even into eukaryotic cells. Together, this modern set of tools offers the promise of radically improving the scope and throughput of experimental biology by providing powerful new methods to ease the genetic manipulation of model and non-model organisms. In this Primer, we describe recombineering and MAGE, their optimal use, their diverse applications and methods for pairing them with other genetic editing tools. We then look forward to the future of genetic engineering.

14.
Bioresour Bioprocess ; 8(1): 91, 2021 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-38650203

RESUMO

Aromatic compounds have broad applications and have been the target of biosynthetic processes for several decades. New biomolecular engineering strategies have been applied to improve production of aromatic compounds in recent years, some of which are expected to set the stage for the next wave of innovations. Here, we will briefly complement existing reviews on microbial production of aromatic compounds by focusing on a few recent trends where considerable work has been performed in the last 5 years. The trends we highlight are pathway modularization and compartmentalization, microbial co-culturing, non-traditional host engineering, aromatic polymer feedstock utilization, engineered ring cleavage, aldehyde stabilization, and biosynthesis of non-standard amino acids. Throughout this review article, we will also touch on unmet opportunities that future research could address.

15.
Health Secur ; 18(4): 278-296, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32816583

RESUMO

Engineering at microscopic scales has an immense effect on the modern bioeconomy. Microbes contribute to such disparate markets as chemical manufacturing, fuel production, crop optimization, and pharmaceutical synthesis, to name a few. Due to new and emerging synthetic biology technologies, and the sophistication and control afforded by them, we are on the brink of deploying engineered microbes to not only enhance traditional applications but also to introduce these microbes to sectors, contexts, and formats not previously attempted. In microbially managed medicine, microbial engineering holds promise for increasing efficacy, improving tissue penetration, and sustaining treatment. In the environment, the most effective areas for deployment are in the management of crops and protection of ecosystems. However, caution is warranted before introducing engineered organisms to new environments where they may proliferate without control and could cause unforeseen effects. We summarize ideas and data that can inform identification and assessment of the risks that these tools present to ensure that realistic hazards are described and unrealistic ones do not hinder advancement. Further, because modes of containment are crucial complements to deployment, we describe the state of the art in microbial biocontainment strategies, current gaps, and how these gaps might be addressed through technological advances in synthetic engineering. Collectively, this work highlights engineered microbes as a foundational and expanding facet of the bioeconomy, projects their utility in upcoming deployments outside the laboratory, and identifies knowns and unknowns that will be necessary considerations and points of focus in this endeavor.


Assuntos
Contenção de Riscos Biológicos/métodos , Substâncias Perigosas , Organismos Geneticamente Modificados , Bactérias , Biotecnologia , Fungos , Técnicas Microbiológicas , Medição de Risco/métodos , Biologia Sintética
16.
Trends Biotechnol ; 38(5): 532-545, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31954529

RESUMO

The field of metabolic engineering has achieved biochemical routes for conversion of renewable inputs to structurally diverse chemicals, but these products contain a limited number of chemical functional groups. In this review, we provide an overview of the progression of uncommon or 'nonstandard' functional groups from the elucidation of their biosynthetic machinery to the pathway optimization framework of metabolic engineering. We highlight exemplary efforts from primarily the last 5 years for biosynthesis of aldehyde, ester, terminal alkyne, terminal alkene, fluoro, epoxide, nitro, nitroso, nitrile, and hydrazine functional groups. These representative nonstandard functional groups vary in development stage and showcase the pipeline of chemical diversity that could soon appear within customized, biologically produced molecules.


Assuntos
Proteínas de Bactérias/química , Produtos Biológicos/química , Vias Biossintéticas/genética , Engenharia Metabólica/tendências , Proteínas de Bactérias/genética , Proteínas de Bactérias/uso terapêutico , Produtos Biológicos/uso terapêutico , Biotecnologia/tendências , Humanos
17.
J Biotechnol ; 307: 1-14, 2020 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-31628973

RESUMO

Carboxylic acid reductases (CARs) catalyze the conversion of carboxylic acids to aldehydes, which are a valuable class of chemicals for many consumer and industrial applications. CARs generally exhibit broad substrate specificity that encompasses aromatic, aliphatic, and di/tri-carboxylic acids, enabling the development of biosynthetic pathways to a wide array of potential aldehyde products. De novo synthetic pathways implementing CARs have enabled the production of sustainable aldehyde products or utilized highly reactive aldehydes as intermediates in the production of chemicals including amines, alcohols, and alkanes. Recent determination of crystal structures of the domains of three CARs has provided insight into the substrate binding and domain dynamics of CARs, which could enable future engineering efforts to both alter the specificity of CAR and expand its potential in future synthetic pathways. In this review, we summarize the current structural and mechanistic understanding of CARs including substrate and catalytic scope, their potential for future engineering, and the advantages and challenges of their application in de novo synthesis.


Assuntos
Engenharia Metabólica , Oxirredutases/metabolismo , Álcoois/metabolismo , Aldeídos/metabolismo , Vias Biossintéticas , Ácidos Carboxílicos/metabolismo , Domínio Catalítico , Oxirredutases/química , Oxirredutases/genética , Domínios Proteicos , Especificidade por Substrato
18.
ACS Synth Biol ; 8(9): 1958-1967, 2019 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-31461264

RESUMO

The engineered de novo vanillin biosynthesis pathway constructed in Escherichia coli is industrially relevant but limited by the reaction catalyzed by catechol O-methyltransferase, which is intended to catalyze the conversion of protocatechuate to vanillate. To identify alternative O-methyltransferases, we constructed a vanillate sensor based on the Caulobacter crescentus VanR-VanO system. Using an E. coli promoter library, we achieved greater than 14-fold dynamic range in our best rationally constructed sensor. We found that this construct and an evolved variant demonstrate remarkable substrate selectivity, exhibiting no detectable response to the regioisomer byproduct isovanillate and minimal response to structurally similar pathway intermediates. We then harnessed the evolved biosensor to conduct rapid bioprospecting of natural catechol O-methyltransferases and identified three previously uncharacterized but active O-methyltransferases. Collectively, these efforts enrich our knowledge of how biosensing can aid metabolic engineering and constitute the foundation for future improvements in vanillin pathway productivity.


Assuntos
Benzaldeídos/metabolismo , Técnicas Biossensoriais/métodos , Escherichia coli/metabolismo , Catecol O-Metiltransferase/genética , Catecol O-Metiltransferase/metabolismo , Caulobacter crescentus/genética , Caulobacter crescentus/metabolismo , Engenharia Metabólica , Plasmídeos/metabolismo , Regiões Promotoras Genéticas , Ácido Vanílico/análise
19.
PLoS Biol ; 17(3): e3000182, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30925180

RESUMO

In experimental evolution, scientists evolve organisms in the lab, typically by challenging them to new environmental conditions. How best to evolve a desired trait? Should the challenge be applied abruptly, gradually, periodically, sporadically? Should one apply chemical mutagenesis, and do strains with high innate mutation rate evolve faster? What are ideal population sizes of evolving populations? There are endless strategies, beyond those that can be exposed by individual labs. We therefore arranged a community challenge, Evolthon, in which students and scientists from different labs were asked to evolve Escherichia coli or Saccharomyces cerevisiae for an abiotic stress-low temperature. About 30 participants from around the world explored diverse environmental and genetic regimes of evolution. After a period of evolution in each lab, all strains of each species were competed with one another. In yeast, the most successful strategies were those that used mating, underscoring the importance of sex in evolution. In bacteria, the fittest strain used a strategy based on exploration of different mutation rates. Different strategies displayed variable levels of performance and stability across additional challenges and conditions. This study therefore uncovers principles of effective experimental evolutionary regimens and might prove useful also for biotechnological developments of new strains and for understanding natural strategies in evolutionary arms races between species. Evolthon constitutes a model for community-based scientific exploration that encourages creativity and cooperation.


Assuntos
Evolução Biológica , Escherichia coli/metabolismo , Humanos , Modelos Genéticos , Mutação/genética , Saccharomyces cerevisiae/metabolismo , Temperatura
20.
Nat Commun ; 9(1): 4425, 2018 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-30356044

RESUMO

Gene synthesis enables creation and modification of genetic sequences at an unprecedented pace, offering enormous potential for new biological functionality but also increasing the need for biosurveillance. In this paper, we introduce a bioinformatics technique for determining whether a gene is natural or synthetic based solely on nucleotide sequence. This technique, grounded in codon theory and machine learning, can correctly classify genes with 97.7% accuracy on a novel data set. We then classify ∼19,000 unique genes from the Addgene non-profit plasmid repository to investigate whether natural and synthetic genes have differential use in heterologous expression. Phylogenetic analysis of distance between source and expression organisms reveals that researchers are using synthesis to source genes from more genetically-distant organisms, particularly for longer genes. We provide empirical evidence that gene synthesis is leading biologists to sample more broadly across the diversity of life, and we provide a foundational tool for the biosurveillance community.


Assuntos
Biologia Computacional/métodos , Algoritmos , Sequência de Bases/genética , Aprendizado de Máquina , Filogenia , Plasmídeos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...