Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharm Res ; 40(12): 2917-2933, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37468827

RESUMO

PURPOSE: To investigate the effect of dry coating the amount and type of silica on powder flowability enhancement using a comprehensive set of 19 pharmaceutical powders having different sizes, surface roughness, morphology, and aspect ratios, as well as assess flow predictability via Bond number estimated using a mechanistic multi-asperity particle contact model. METHOD: Particle size, shape, density, surface energy and area, SEM-based morphology, and FFC were assessed for all powders. Hydrophobic (R972P) or hydrophilic (A200) nano-silica were dry coated for each powder at 25%, 50%, and 100% surface area coverage (SAC). Flow predictability was assessed via particle size and Bond number. RESULTS: Nearly maximal flow enhancement, one or more flow category, was observed for all powders at 50% SAC of either type of silica, equivalent to 1 wt% or less for both the hydrophobic R972P or hydrophilic A200, while R972P generally performed slightly better. Silica amount as SAC better helped understand the relative performance. The power-law relation between FFC and Bond number was observed. CONCLUSION: Significant flow enhancements were achieved at 50% SAC, validating previous models. Most uncoated very cohesive powders improved by two flow categories, attaining easy flow. Flowability could not be predicted for both the uncoated and dry coated powders via particle size alone. Prediction was significantly better using Bond number computed via the mechanistic multi-asperity particle contact model accounting for the particle size, surface energy, roughness, and the amount and type of silica. The widely accepted 200 nm surface roughness was not valid for most pharmaceutical powders.


Assuntos
Dióxido de Silício , Dióxido de Silício/química , Pós/química , Tamanho da Partícula , Interações Hidrofóbicas e Hidrofílicas , Composição de Medicamentos
2.
Cartilage ; 13(3): 19476035221113959, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36040157

RESUMO

OBJECTIVE: Intervertebral disk degeneration is a prevalent postoperative complication after discectomy, underscoring the need to develop preventative and bioactive treatment strategies that decelerate degeneration and seal annulus fibrosus (AF) defects. Human mesenchymal stem cell-derived exosomes (MSC-Exos) hold promise for cell-free bioactive repair; however, their ability to promote AF repair is poorly understood. The objective of this study was to evaluate the ability of MSC-Exos to promote endogenous AF repair processes and integrate MSC-Exos within a biomaterial delivery system. DESIGN: We characterize biophysical and biochemical properties of normoxic (Nx) and hypoxic (Hx) preconditioned MSC-Exos from young, healthy donors and examine their effects on AF cell proliferation, migration, and gene expression. We then integrate a poly(lactic-co-glycolic acid) microsphere (PLGA µSphere) delivery platform within an interpenetrating network hydrogel to facilitate sustained MSC-Exo delivery. RESULTS: Hx MSC-Exos led to a more robust response in AF cell proliferation and migration than Nx MSC-Exos and was selected for a downstream protection experiment. Hx MSC-Exos maintained a healthy AF cell phenotype under a TNFα challenge in vitro and attenuated catabolic responses. In all functional assays, AF cell responses were more sensitive to Hx MSC-Exos than Nx MSC-Exos. PLGA µSpheres released MSC-Exos over a clinically relevant timescale without affecting hydrogel modulus or pH upon initial embedment and µSphere degradation. CONCLUSIONS: This MSC-Exo treatment strategy may offer benefits of stem cell therapy without the need for exogenous stem cell transplantation by stimulating cell proliferation, promoting cell migration, and protecting cells from the degenerative proinflammatory microenvironment.


Assuntos
Anel Fibroso , Exossomos , Células-Tronco Mesenquimais , Exossomos/genética , Exossomos/metabolismo , Glicóis/metabolismo , Humanos , Hidrogéis , Células-Tronco Mesenquimais/metabolismo , Microesferas , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/metabolismo
3.
Eur J Pharm Sci ; 151: 105408, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32502519

RESUMO

Recent work showed that contrary to conventional wisdom, fine surface engineered excipients outperform their larger counterparts in blends of highly loaded blends of cohesive drug powders in terms of their packing, flowability and tablet tensile strength. Here, two continuous devices, fluid-energy mill (FEM) and conical mill (Comil), are compared with LabRAM, a batch device used in previous work, for nano-silica dry coating of microcrystalline cellulose (MCC) excipients, 20 and 30 µm. Coated MCCs from all three devices had higher bulk densities and flow function coefficients (FFCs) compared with Avicel PH-102. Silica coating quality was best with LabRAM, but also good with FEM and Comil, although Comil was less effective for the finer MCC. However, the better coating quality of LabRAM had a downside of having poorer compaction properties. The most surprising outcome was that multi-component blends of 17 wt% coated MCC with 60 wt % Ibuprofen 50 had higher bulk density, higher or similar flowability, higher tablet tensile strength, and comparable Ibuprofen dissolution from tablets, compared to those with Prosolv 50, a silicified excipient. The FEM dry coated MCC blends, having only 0.17 wt% silica, performed the best, having desirable bulk density, FFC, and tensile strength that could facilitate high-speed direct compression tableting. In summary, considering that achieving best coating quality need not be the primary objective, FEM may be the best option for producing desired sized dry coated fine excipients.


Assuntos
Celulose , Excipientes , Composição de Medicamentos , Tamanho da Partícula , Pós , Comprimidos , Resistência à Tração
4.
Int J Pharm ; 557: 354-365, 2019 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-30597273

RESUMO

Direct compaction tableting, a desired manufacturing option, is infeasible for blends containing fine cohesive poorly-compactable APIs at higher drug loadings. In this study, the feasibility of using fine, dry coated excipients is investigated instead of dry coating of the APIs, as was done previously. Avicel PH-105 (20.1 µm) dry coated with 1 wt% hydrophilic silica A200 as an engineered excipient was blended with fine (11.3 µm) or semi-fine (30.2 µm) Acetaminophen, or Ibuprofen 50 (55.4 µm) in binary blends at low, medium and high drug loadings (10%, 30%, 60%). The blend uniformity, bulk density, flowability, as well as tablet properties such as friability, weight variation and strength demonstrate overall better performance compared to blends with Avicel PH-105, Prosolv 50 or Prosolv 90 as the excipient. These results along with processability maps of bulk density vs. FFC and tablet tensile strength vs. FFC indicate dry coated Avicel PH-105 could enable direct compaction for IBU50 and cAPAP at all drug loadings, and up to 30% drug loading for mAPAP. In contrast, Prosolv 90 failed for IBU50 at 60% drug loading, and for mAPAP at all drug loadings. Prosolv 50 could only enable direct compaction for IBU50 at all drug loadings. These unexpected outcomes suggest that for direct compaction of very fine, cohesive APIs at higher drug loadings, surface modified fine excipients perform better. A surprising outcome is the improvement in tablet strength for blends with dry coated Avicel PH-105 compared to uncoated Avicel PH-105 at higher drug loading, especially considering parts I and II showed that silica dry coating decreases the placebo tablet tensile strength.


Assuntos
Acetaminofen/química , Celulose/química , Excipientes/química , Ibuprofeno/química , Dióxido de Silício/química , Composição de Medicamentos , Tamanho da Partícula , Reologia , Comprimidos , Resistência à Tração
5.
J Pharm Sci ; 108(1): 234-242, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30472263

RESUMO

The effect of particle size on the dissolution behavior of the particles of amorphous solid dispersions (ASDs) of griseofulvin (GF), with 0%-50% Kollidon® VA 64 as a crystallization inhibitor is investigated. Both the final dissolved GF concentration and the dissolution rate of GF ASDs were found to be inversely proportional to the particle size. The solution concentrations for the smallest (45-75 µm) size group with different polymer loadings were significantly higher than those for the largest (250-355 µm) group regardless of the initial GF amount. Specifically, the dissolution rate of GF ASDs with 50% polymer loading for the finest group was 2.7 times higher than for the largest group under supersaturating conditions. The rates of dissolution and recrystallization were assessed through surface concentration (Cs) and Avrami recrystallization rate kinetics, where the solid-state recrystallization was confirmed using Raman spectroscopy. Outcomes indicated that particle size reduction enhanced ASD drug loading by reducing the amount of polymer necessary as finest size ASDs initially dissolve faster, negating their higher recrystallization rate. Kollidon® VA 64 at 30% loading was sufficient to inhibit the GF recrystallization. Overall, the combination of particle size reduction and recrystallization inhibition is effective for improved dissolution behavior of GF ASDs.


Assuntos
Composição de Medicamentos/métodos , Griseofulvina/química , Polímeros/química , Cristalização , Estabilidade de Medicamentos , Tamanho da Partícula , Povidona/química , Pós , Solubilidade , Água/química
6.
Int J Pharm ; 546(1-2): 125-136, 2018 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-29763689

RESUMO

A solventless process for simultaneously milling and dry coating microcrystalline cellulose (MCC) was investigated for producing fine excipients in five different sizes (∼20, 25, 30, 35, 40 µm) having high bulk density (BD), good flow function coefficient (FFC), and excellent compaction. Avicel PH-102, used as the starting material, was milled and coated with two grades of silicas, hydrophobic and hydrophilic (R972P and A200), using a fluid energy mill (FEM). Through judicious selection of the FEM feed rate, feeding pressure, and grinding pressure, five desired milled sizes were produced. The bulk density of all the milled-coated (1 wt% A200) excipients was significantly better than uncoated-milled MCC, Avicel PH-102, and Prosolv 50 and 90. Whereas the FFC values were greater than uncoated-milled MCC, Avicel PH-102, and Prosolv 50 (latter for ∼30, 35, and 40 µm sizes). The tablet compaction testing was used to evaluate compactibility (tensile strength vs tablet porosity), compressibility (tablet porosity vs compaction pressure), and tabletibility (tensile strength vs compaction pressure). The results indicate that all finer grade milled and A200 coated MCC had lower porosity and higher tablet strengths than Prosolv 50 and 90 at all compaction pressures. Surprisingly, the BD and FFC were better for A200 than for R972P coated-milled MCCs; explained through analyzing inter-particle contact models. Finally, milling did not increase the moisture content but coating with silica led to a slight increase; A200 higher than R972P. It is hoped that these engineered excipients would help formulators with a multitude of options for finer excipients without loss of flow and bulk density.


Assuntos
Celulose/química , Excipientes/química , Composição de Medicamentos , Porosidade , Dióxido de Silício/química , Propriedades de Superfície , Comprimidos , Resistência à Tração
7.
Int J Pharm ; 543(1-2): 288-299, 2018 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-29625168

RESUMO

It has been shown that dry coating cohesive active pharmaceutical ingredients (APIs) with nano-silica can improve packing and flow of their blends, facilitating high speed direct compression tableting. This paper examines the broader scope and generality of previous work by examining three fine APIs; micronized Acetaminophen (mAPAP), coarse Acetaminophen (cAPAP) and micronized Ibuprofen (mIBU), and considers dry coating with both hydrophobic or hydrophilic nano-silica to examine the effect not only on packing density and flow of their blends, but also dissolution and tensile strength of their tablets. The impact of the excipient size on blend and tablet properties are also investigated, indicating blend flow is most improved when matching API particle size with excipient particle size. In all cases where the API is dry coated, the blend packing and flow improve, so as to suggest such high drug loaded blends could enable direct compression. Using dry coated API along with finer excipients in blends lead to improved hardness of the corresponding tablets. Interestingly, dissolution profiles show dry coated API tablets generally have faster dissolution rates, regardless of silica hydrophilicity, suggesting API powder deagglomeration via nano-silica coating plays a crucial role. The most significant conclusion is that, although there are differences in properties of blends that depend on the API, hydrophobic or hydrophilic nano-silica coating, as well as large or fine excipients, in all cases, dry coating of APIs significantly improves the possibility of using the specific blend at high drug loading in direct compression tableting.


Assuntos
Química Farmacêutica/métodos , Excipientes/química , Nanopartículas/química , Dióxido de Silício/química , Comprimidos/química , Acetaminofen/química , Ibuprofeno/química , Microscopia Eletrônica de Varredura , Nanopartículas/ultraestrutura , Tamanho da Partícula , Pós , Resistência à Tração
8.
J Pharm Sci ; 107(8): 2107-2118, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29665377

RESUMO

Although strip films are a promising platform for delivery of poorly water-soluble drug particles via slurry casting, the effect of critical material attributes, for example, superdisintegrants (SDIs) on critical quality attributes, including film disintegration time (DT), remains underexplored. A 2-level factorial design is considered to examine the impact of the SDI type (sodium starch glycolate and croscarmellose sodium), their amount, and film thickness. SDIs were used with hydroxypropyl methylcellulose (E15LV) and glycerin solutions along with viscosity matching. Fenofibrate, a model poorly water-soluble drug, was micronized and surface modified via fluid energy milling. Significant decreases in film DT, measured using 3 different methods, were observed due to the addition of SDIs. Percentage reduction in DT was a strong function of SDI amount, and thinner films disintegrated faster. Films with either higher SDI concentrations (>9%) or films under 80 µm, exhibited fast DT (<180 s, European Pharmacopeia). All thin films (50-60 µm) exhibited immediate release (>80% in 10 min). All films achieved good content uniformity, except for those with the lowest amount of SDI, attributed to insufficient viscosity and thickness nonuniformity due to the SDI. Finally, all films achieved adequate mechanical properties, notwithstanding minor negative impact of SDIs.


Assuntos
Carboximetilcelulose Sódica/química , Excipientes/química , Fenofibrato/administração & dosagem , Hipolipemiantes/administração & dosagem , Amido/análogos & derivados , Água/química , Sistemas de Liberação de Medicamentos/métodos , Liberação Controlada de Fármacos , Fenofibrato/química , Glicerol/química , Hipolipemiantes/química , Derivados da Hipromelose/química , Solubilidade , Amido/química , Viscosidade
9.
Int J Pharm ; 536(1): 127-137, 2018 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-29191481

RESUMO

Excipients with good flowability, bulk density as well as compaction properties are desired for use in tableting since they play important roles in formulation development and processing, including, handling, mixing, feeding and compaction. The objective of this paper is to examine the feasibility of using dry coating based surface modification of microcrystalline cellulose, Avicel PH-105, to produce an engineered fine grade (<30 µm) excipient that has all three desired properties. Using a material sparing high-intensity vibrational mixer, Avciel PH-105 is dry coated with 1 wt% Aerosil 200, selected due to its relatively higher dispersive surface energy and lower particle size amongst other silica choices. The results indicated that as expected, the bulk density and flowability are significantly improved, while there was an appreciable loss of compaction. To minimize the loss of compaction, attributed to decreased surface energy after coating, while maintaining improved bulk density and flowability, the effect of reduced silica amount was examined. Remarkably, at reduced levels (0.5 wt% to 0.7 wt%) of Aerosil 200, significant improvements in bulk density and flowability were attained with only 9%-12% compaction reduction. The properties of the surface-engineered excipients were compared with several other commercially available pharmaceutical excipients using two different processibility or regime maps; tablet tensile strength versus bulk density or flow function coefficient (FFC). The surface engineered excipients exhibited the best overall performance establishing a promising pathway to engineer excipients using dry processing instead of complex processes such as spray drying.


Assuntos
Celulose/química , Excipientes/química , Química Farmacêutica/métodos , Composição de Medicamentos/métodos , Concentração de Íons de Hidrogênio , Tamanho da Partícula , Dióxido de Silício/química , Propriedades de Superfície , Comprimidos/química , Tecnologia Farmacêutica/métodos , Resistência à Tração
10.
Eur J Pharm Sci ; 104: 344-355, 2017 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-28435077

RESUMO

Content uniformity of low dose blends with fine active pharmaceutical ingredients (API) is adversely impacted due to API agglomeration caused by high powder cohesion. Dry coating using high-intensity vibratory mixing is employed to reduce API cohesion and granular Bond number as well as agglomeration as predicted by contact models, hence improve blend content uniformity (CU). Micronized acetaminophen (mAPAP) (~10µm), a model API, was dry coated with nano-silica R972P (20nm), and mixed with Avicel 102. The amount of silica was varied from 0 to 2.74wt%, corresponding to theoretical surface area coverage (SAC) from 0 to 100% respectively. Bulk density, unconfined yield strength, and dispersive surface energy results indicated dry coating with 0.27 to 1.0wt% silica was adequate for API property enhancement; further corroborated by improved CU for 5wt% API blends. Excellent CU was achieved for 3, 5 and 10wt% API loaded blends, where 30min of mixing was found to be acceptable for all three. The CU with dry coated mAPAP was significantly lower and within the acceptable range as compared to control blends without silica, as well as those with silica added during blending. Sieving of mAPAP illustrated the reduction in mAPAP agglomeration, necessary for improved CU after dry coating, corroborating model based predictions. Compared to theoretical predictions, actual CU was higher unless API agglomerate size distribution obtained via sieving was taken into account. Overall, cohesion reduction by dry coating is shown as a promising approach for improving content uniformity of cohesive API blends.


Assuntos
Acetaminofen/química , Celulose/química , Nanopartículas/química , Dióxido de Silício/química , Adesividade , Analgésicos não Narcóticos/química , Composição de Medicamentos , Tamanho da Partícula , Pós
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...