Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Sci ; 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38652419

RESUMO

This study elucidates the mass transfer mechanism of myoglobin (Mb) within a single silica particle with a 50 nm pore size at various pH levels (6.0, 6.5, 6.8, and 7.0). Investigation of Mb distribution ratio (R) and distribution kinetics was conducted using absorption microspectroscopy. The highest R was observed at pH 6.8, near the isoelectric point of Mb, as the electrostatic repulsion between Mb molecules on the silica surface decreased. The time-course absorbance of Mb in the silica particle was rigorously analyzed based on a first-order reaction, yielding the intraparticle diffusion coefficient of Mb (Dp). Dp-(1 + R)-1 plots at different pH values were evaluated using the pore and surface diffusion model. Consequently, we found that at pH 6.0, Mb diffused in the silica particle exclusively through surface diffusion, whereas pore diffusion made a more substantial contribution at higher pH. Furthermore, we demonstrated that Mb diffusion was hindered by slow desorption, associated with the electrostatic charge of Mb. This comprehensive analysis provides insights into the diffusion mechanisms of Mb at acidic, neutral, and basic pH conditions.

2.
Langmuir ; 39(32): 11329-11336, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37523758

RESUMO

This study investigated the pore size dependence of the mass transfer of zinc myoglobin (ZnMb) in a single mesoporous silica particle through confocal fluorescence microspectroscopy. The ZnMb's fluorescence depth profile in the particle was analyzed by a spherical diffusion model, and the intraparticle diffusion coefficient was obtained. The intraparticle diffusion coefficient in the silica particle with various pore sizes (10, 15, 30, and 50 nm) was furthermore analyzed based on a pore and surface diffusion model. Although the mass transfer mechanism in all silica particles followed the pore and surface diffusion model, the adsorption and desorption of ZnMb affected the mass transfer depending on the pore size. The influence of the slow desorption of ZnMb became pronounced for large pore sizes (30 and 50 nm), which was revealed by simulation using a diffusion equation combined with the adsorption-desorption kinetics. The distribution of ZnMb was suppressed in small pore sizes (10 and 15 nm) owing to the adsorption of ZnMb onto the entrance of the pore. Thus, we revealed the mass transfer mechanism of ZnMb in the silica particle with different pore sizes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...