Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Rep Methods ; 2(11): 100337, 2022 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-36452871

RESUMO

Human intestinal organoids (HIOs) derived from human pluripotent stem cells (hPSCs) hold great promise for translational medical applications. A common method to obtain HIOs has been to harvest floating hindgut spheroids arising from hPSCs. As this technique is elegant but burdensome due to the complex protocol and line-to-line variability, a more feasible method is desired. Here, we establish a robust differentiation method into suspension-cultured HIOs (s-HIOs) by seeding dissociated cells on a spheroid-forming plate. This protocol realizes the reliable generation of size-controllable spheroids. Under optimized conditions in a rotating bioreactor, the generated spheroids quickly grow and mature into large s-HIOs with supporting mesenchyme. Upon mesenteric transplantation, s-HIOs further mature and develop complex tissue architecture in vivo. This method demonstrates that intestinal tissue can be generated from iPSC-derived HIOs via suspension induction and bioreactor maturation, establishing a reliable culture platform with wide applications in regenerative medicine.


Assuntos
Intestinos , Células-Tronco Pluripotentes , Humanos , Organoides , Sistema Digestório , Reatores Biológicos
2.
Biochem Biophys Res Commun ; 542: 40-47, 2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-33486190

RESUMO

Inflammatory bowel disease (IBD) comprises two major subtypes, ulcerative colitis (UC) and Crohn's disease, which are multifactorial diseases that may develop due to genetic susceptibility, dysbiosis, or environmental factors. Environmental triggers of IBD include food-borne factors, and a previous nationwide survey in Japan identified pre-illness consumption of isoflavones as a risk factor for UC. However, the precise mechanisms involved in the detrimental effects of isoflavones on the intestinal mucosa remain unclear. The present study employed human colonic organoids (hCOs) to investigate the functional effect of two representative isoflavones, genistein and daidzein, on human colonic epithelial cells. The addition of genistein to organoid reformation assays significantly decreased the number and size of reformed hCOs compared with control and daidzein treatment, indicating an inhibitory effect of genistein on colonic cell/progenitor cell function. Evaluation of the phosphorylation status of 49 different receptor tyrosine kinases showed that genistein selectively inhibited phosphorylation of epidermal growth factor receptor (EGFR) and hepatocyte growth factor receptor (HGFR). We established a two-dimensional wound-repair model using hCOs and showed that genistein significantly delayed the overall wound-repair response. Our results collectively show that genistein may exert its detrimental effects on the intestinal mucosa via negative regulation of stem/progenitor cell function, possibly leading to sustained mucosal injury and the development of UC.

3.
Biochem Biophys Rep ; 25: 100906, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33490652

RESUMO

Notch signaling is activated in the intestinal epithelial cells (IECs) of patients with inflammatory bowel disease (IBD), and contributes to mucosal regeneration. Our previous study indicated that TNF-α and Notch signaling may synergistically promote the expression of the intestinal stem cell (ISC) marker OLFM4 in human IECs. In the present study, we investigated the gene regulation and function of OLFM4 in human IEC lines. We confirmed that TNF-α and Notch synergistically upregulate the mRNA expression of OLFM4. Luciferase reporter assay showed that OLFM4 transcription is regulated by the synergy of TNF-α and Notch. At the protein level, synergy between TNF-α and Notch promoted cytoplasmic accumulation of OLFM4, which has potential anti-apoptotic properties in human IECs. Analysis of patient-derived tissues and organoids consistently showed cytoplasmic accumulation of OLFM4 in response to NF-κB and Notch activation. Cytoplasmic accumulation of OLFM4 in human IECs is tightly regulated by Notch and TNF-α in synergy. Such cytoplasmic accumulation of OLFM4 may have a cell-protective role in the inflamed mucosa of patients with IBD.

4.
Biochem Biophys Res Commun ; 524(3): 533-541, 2020 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-32014254

RESUMO

The early-phase wound repair response of the intestinal epithelium is characterized by rapid and organized cell migration. This response is regulated by several humoral factors, including TGF-ß. However, due to a lack of appropriate models, the precise response of untransformed intestinal epithelial cells (IECs) to those factors is unclear. In this study, we established an in vitro wound repair model of untransformed IECs, based on native type-I collagen. In our system, IECs formed a uniform monolayer in a two-chamber culture insert and displayed a stable wound repair response. Gene expression analysis revealed significant induction of Apoa1, Apoa4, and Wnt4 during the collagen-guided wound repair response. The wound repair response was enhanced significantly by the addition of TGF-ß. Surprisingly, addition of TGF-ß induced a set of genes, including Slc28a2, Tubb2a, and Cpe, that were expressed preferentially in fetal IECs. Moreover, TGF-ß significantly increased the peak velocity of migrating IECs and, conversely, reduced the time required to reach the peak velocity, as confirmed by the motion vector prediction (MVP) method. Our current in vitro system could be employed to assess other humoral factors involved in IEC migration and could contribute to a deeper understanding of the wound repair potentials of untransformed IECs.


Assuntos
Movimento Celular/genética , Células Epiteliais/patologia , Feto/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Intestinos/patologia , Modelos Biológicos , Fator de Crescimento Transformador beta/farmacologia , Cicatrização/genética , Animais , Movimento Celular/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Feto/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Organoides/efeitos dos fármacos , Organoides/metabolismo , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética , Cicatrização/efeitos dos fármacos
5.
J Crohns Colitis ; 13(4): 495-509, 2019 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-30395194

RESUMO

BACKGROUND AND AIMS: The intestinal epithelium of inflammatory bowel disease [IBD] patients is exposed to various pro-inflammatory cytokines, most notably tumour necrosis factor alpha [TNF-α]. We have previously shown that the Notch signalling pathway is also upregulated in such an epithelium, contributing to intestinal epithelial cell [IEC] proliferation and regeneration. We aimed to reproduce such environment in vitro and explore the gene regulation involved. METHODS: Human IEC cell lines or patient-derived organoids were used to analyse Notch- and TNF-α-dependent gene expression. Immunohistochemistry was performed to analyse expression of ubiquitin D [UBD] in various patient-derived intestinal tissues. RESULTS: In human IEC cell lines, we found that Notch signalling and TNF-α-induced NFκB signalling are reciprocally regulated to promote expression of a specific gene subset. Global gene expression analysis identified UBD to be one of the most highly upregulated genes, due to synergy of Notch and TNF-α. The synergistic expression of UBD was regulated at the transcriptional level, whereas the UBD protein had an extremely short half-life due to post-translational, proteasomal degradation. In uninflamed intestinal tissues from IBD patients, UBD expression was limited to IECs residing at the crypt bottom. In contrast, UBD-expressing IECs were seen throughout the crypt in inflamed tissues, indicating substantial induction by the local inflammatory environment. Analysis using patient-derived organoids consistently confirmed conserved Notch- and TNF-α-dependent expression of UBD. Notably, post-infliximab [IFX] downregulation of UBD reflected favourable outcome in IBD patients. CONCLUSION: We propose that UBD is a novel inflammatory-phase protein expressed in IECs, with a highly rapid responsiveness to anti-TNF-α treatment.


Assuntos
Doenças Inflamatórias Intestinais/genética , Doenças Inflamatórias Intestinais/metabolismo , Receptores Notch/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Ubiquitinas/genética , Ubiquitinas/metabolismo , Antibacterianos/farmacologia , Linhagem Celular , Doxiciclina/farmacologia , Sinergismo Farmacológico , Células Epiteliais/metabolismo , Fármacos Gastrointestinais/farmacologia , Fármacos Gastrointestinais/uso terapêutico , Expressão Gênica , Regulação da Expressão Gênica , Humanos , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/patologia , Infliximab/farmacologia , Infliximab/uso terapêutico , Mucosa Intestinal/metabolismo , NF-kappa B/metabolismo , Organoides/metabolismo , Receptores Notch/genética , Transdução de Sinais , Transcrição Gênica , Transcriptoma , Fator de Necrose Tumoral alfa/farmacologia , Regulação para Cima
6.
J Gastroenterol ; 53(9): 1035-1047, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29374777

RESUMO

BACKGROUND: Intestinal stem cells (ISCs) play indispensable roles in the maintenance of homeostasis, and also in the regeneration of the damaged intestinal epithelia. However, whether the inflammatory environment of Crohn's disease (CD) affects properties of resident small intestinal stem cells remain uncertain. METHODS: CD patient-derived small intestinal organoids were established from enteroscopic biopsy specimens taken from active lesions (aCD-SIO), or from mucosa under remission (rCD-SIO). Expression of ISC-marker genes in those organoids was examined by immunohistochemistry, and also by microfluid-based single-cell multiplex gene expression analysis. The ISC-specific function of organoid cells was evaluated using a single-cell organoid reformation assay. RESULTS: ISC-marker genes, OLFM4 and SLC12A2, were expressed by an increased number of small intestinal epithelial cells in the active lesion of CD. aCD-SIOs, rCD-SIOs or those of non-IBD controls (NI-SIOs) were successfully established from 9 patients. Immunohistochemistry showed a comparable level of OLFM4 and SLC12A2 expression in all organoids. Single-cell gene expression data of 12 ISC-markers were acquired from a total of 1215 cells. t-distributed stochastic neighbor embedding analysis identified clusters of candidate ISCs, and also revealed a distinct expression pattern of SMOC2 and LGR5 in ISC-cluster classified cells derived from aCD-SIOs. Single-cell organoid reformation assays showed significantly higher reformation efficiency by the cells of the aCD-SIOs compared with that of cells from NI-SIOs. CONCLUSIONS: aCD-SIOs harbor ISCs with modified marker expression profiles, and also with high organoid reformation ability. Results suggest modification of small intestinal stem cell properties by unidentified factors in the inflammatory environment of CD.


Assuntos
Doença de Crohn/genética , Doença de Crohn/patologia , Intestino Delgado/patologia , Organoides/diagnóstico por imagem , Organoides/patologia , Análise de Célula Única/métodos , Células-Tronco/patologia , Enteroscopia de Balão , Biomarcadores/metabolismo , Biópsia , Proteínas de Ligação ao Cálcio/biossíntese , Doença de Crohn/diagnóstico por imagem , Progressão da Doença , Células Epiteliais/patologia , Expressão Gênica , Fator Estimulador de Colônias de Granulócitos/biossíntese , Fator Estimulador de Colônias de Granulócitos/genética , Humanos , Inflamação/fisiopatologia , Intestino Delgado/diagnóstico por imagem , Receptores Acoplados a Proteínas G/biossíntese , Membro 2 da Família 12 de Carreador de Soluto/biossíntese , Membro 2 da Família 12 de Carreador de Soluto/genética , Transcriptoma
7.
Stem Cell Reports ; 10(1): 27-42, 2018 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-29233556

RESUMO

ATOH1 is a master transcription factor for the secretory lineage differentiation of intestinal epithelial cells (IECs). However, the comprehensive contribution of ATOH1+ secretory lineage IECs to the homeostasis, repair, and tumorigenesis of the intestinal epithelium remains uncertain. Through our ATOH1+ cell-lineage tracing, we show here that a definite number of ATOH1+ IECs retain stem cell properties and can form ATOH1+IEC-derived clonal ribbons (ATOH1+ICRs) under completely homeostatic conditions. Interestingly, colonic ATOH1+ IECs appeared to exhibit their stem cell function more frequently compared with those of the small intestine. Consistently, the formation of ATOH1+ICRs was significantly enhanced upon dextran sodium sulfate colitis-induced mucosal damage. In addition, colonic ATOH1+ IECs acquired tumor stem cell-like properties in the azoxymethane-DSS tumor model. Our results reveal an unexpected contribution of colonic ATOH1+ IECs to maintaining the stem cell population under both homeostatic and pathologic conditions and further illustrate the high plasticity of the crypt-intrinsic stem cell hierarchy.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Transformação Celular Neoplásica/metabolismo , Colo/metabolismo , Neoplasias do Colo/metabolismo , Células Epiteliais/metabolismo , Mucosa Intestinal/metabolismo , Proteínas de Neoplasias/metabolismo , Células-Tronco Neoplásicas/metabolismo , Animais , Compostos Azo/toxicidade , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Transformação Celular Neoplásica/induzido quimicamente , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Colo/lesões , Colo/patologia , Neoplasias do Colo/induzido quimicamente , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Células Epiteliais/patologia , Mucosa Intestinal/lesões , Mucosa Intestinal/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Camundongos Transgênicos , Proteínas de Neoplasias/genética , Células-Tronco Neoplásicas/patologia
8.
Data Brief ; 10: 551-556, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28124021

RESUMO

The data on the immunohistochemical analysis of conditional Notch ligand knockout mice is presented. Targeted deletion of Jag1, Dll1, Dll4, or Dll1 plus Dll4 in Lgr5+ve cells was induced by a Cre-mediated gene recombination, and differentiation or proliferation of the intestinal epithelial cells was examined by immunohistochemistry. These data are the extension of the data presented and discussed in the paper entitled "Indispensable role of non-canonical Notch signaling in the proliferation of Apc-deficient intestinal tumors" (Nakata et al., Submitted for publication) [1].

9.
Biochem Biophys Res Commun ; 482(4): 1296-1303, 2017 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-27939883

RESUMO

Ligand-dependent activation of Notch signaling is required to maintain the stem-cell niche of normal intestinal epithelium. However, the precise role of Notch signaling in the maintenance of the intestinal tumor stem cell niche and the importance of the RBPJ-independent non-canonical pathway in intestinal tumors remains unknown. Here we show that Notch signaling was activated in LGR5+ve cells of APC-deficient mice intestinal tumors. Accordingly, Notch ligands, including Jag1, Dll1, and Dll4, were expressed in these tumors. In vitro studies using tumor-derived organoids confirmed the intrinsic Notch activity-dependent growth of tumor cells. Surprisingly, the targeted deletion of Jag1 but not RBPJ in LGR5+ve tumor-initiating cells resulted in the silencing of Hes1 expression, disruption of the tumor stem cell niche, and dramatic reduction in the proliferation activity of APC-deficient intestinal tumors in vivo. Thus, our results highlight the importance of ligand-dependent non-canonical Notch signaling in the proliferation and maintenance of the tumor stem cell niche in APC-deficient intestinal adenomas.


Assuntos
Proteína da Polipose Adenomatosa do Colo/genética , Neoplasias Intestinais/metabolismo , Proteína Jagged-1/genética , Receptores Notch/metabolismo , Células-Tronco/citologia , Adenoma/metabolismo , Animais , Proliferação de Células , Fator de Crescimento Epidérmico/metabolismo , Deleção de Genes , Regulação Neoplásica da Expressão Gênica , Inativação Gênica , Ligantes , Camundongos , Microscopia de Fluorescência , Células-Tronco Neoplásicas/citologia , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais
10.
Ann N Y Acad Sci ; 1086: 91-103, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17185508

RESUMO

Serofendic acid is a novel neuroprotective factor isolated from fetal calf serum. To elucidate the mechanisms how serofendic acid exerts neuroprotection, we examined its effects on glutamate-induced excito-toxicity in mouse cortical neurons. The effects of serofendic acid on inflammatory cytokine and neurotrophin production by glial cells were also examined to evaluate the indirect neuroprotection. Serofendic acid significantly and dose dependently increased survival of mouse cortical neurons after 10 muM N-methyl-D-asparate (NMDA) exposure. However, it did not affect production of inflammatory cytokines and neurotrophins by microglia as assessed by reverse transciption polymerase chain reaction (RT-PCR) for mRNA expression and ELISA for protein levels, though it suppressed tumor necrosis factor (TNF)-alpha production by astrocytes. Thus, serofendic acid works directly on neurons to protect against glutamate toxicity. Suppression of TNF-alpha production by astoryctes may also synergistically exert neuroprotective functions of serofendic acid. Serofendic acid may be of use for the future therapeutic strategy against ischemic and degenerative neurological disorders.


Assuntos
Diterpenos/farmacologia , Degeneração Neural/patologia , Neurônios/fisiologia , Fármacos Neuroprotetores/farmacologia , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/fisiologia , Sobrevivência Celular , Células Cultivadas , Citocinas/biossíntese , Ácido Glutâmico/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , N-Metilaspartato , Degeneração Neural/induzido quimicamente , Fatores de Crescimento Neural/biossíntese , Neuroglia/efeitos dos fármacos , Neuroglia/fisiologia , Neurônios/efeitos dos fármacos
11.
Ann N Y Acad Sci ; 1088: 219-29, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17192568

RESUMO

Accumulation of activated microglia and reactive astrocytes is observed around degenerating neurons in various inflammatory or degenerative disorders in the central nervous system. These reactive glial cells may play either neurotoxic or neuroprotective roles. In this study, we examined the effects of glia-derived cytokines on neuronal degeneration and regeneration. Neuron-rich cultures were stimulated with supernatant of microglia and astrocytes stimulated with LPS, or a various concentrations of recombinant cytokines. Neurotoxicity was evaluated by an MTS assay. Neuronal damage was also evaluated by a frequency of dendritic beading, which was found to be an early feature of neuronal damage toward cell death. Effects of the cytokines on production of neurotrophic factors by astrocytes were also examined by RT-PCR for the expression of mRNA. Supernatant of LPS-stimulated microglia induced neuronal cell death. However, all the recombinant cytokines examined did not induce cell death, while IFNgamma and TNFalpha induced dendrite beading, an early feature of neuronal damage. IL-1beta and TNFalpha enhanced the production of neurotrophic factors by astrocytes. These observations suggest that glial cell-derived cytokines may synergistically function in neuronal degeneration with other toxic factors produced by activated microglia, and that some of them may also function in regeneration by inducing neurotrophic factors.


Assuntos
Citocinas/imunologia , Microglia/imunologia , Degeneração Neural/imunologia , Regeneração Nervosa/imunologia , Neuroimunomodulação/imunologia , Animais , Humanos
12.
Brain Res ; 1116(1): 12-8, 2006 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-16956589

RESUMO

The neurotrophic factors, nerve growth factor (NGF) and glial cell line-derived neurotrophic factor (GDNF), are produced by astrocytes, and are induced by inflammatory stimuli including bacterial lipopolysaccharide and pro-inflammatory cytokines. In this study, we examined the regulatory mechanisms of tumor necrosis factor-alpha (TNF-alpha)-induced production of neurotrophic factors. We show here that cultured astrocytes express both TNF-alpha receptor 1 (TNFR1) and TNFR2, and that activation of these receptors by TNF-alpha promotes expression of both NGF and GDNF. In addition, we observe that not only exogenous TNF-alpha but also TNF-alpha produced by astrocytes induce NGF and GDNF production in astrocytes. These results suggest that an autocrine loop involving TNF-alpha contributes to the production of neurotrophic factors in response to inflammation.


Assuntos
Astrócitos/metabolismo , Fator Neurotrófico Derivado de Linhagem de Célula Glial/biossíntese , Fatores de Crescimento Neural/biossíntese , Receptores do Fator de Necrose Tumoral/fisiologia , Fator de Necrose Tumoral alfa/fisiologia , Animais , Animais Recém-Nascidos , Anticorpos Bloqueadores/farmacologia , Astrócitos/efeitos dos fármacos , Citometria de Fluxo , Técnicas Imunoenzimáticas , Lipopolissacarídeos/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , RNA Mensageiro/biossíntese , Receptores do Fator de Necrose Tumoral/antagonistas & inibidores , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator de Necrose Tumoral alfa/farmacologia
13.
J Biol Chem ; 281(30): 21362-21368, 2006 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-16720574

RESUMO

Glutamate released by activated microglia induces excitoneurotoxicity and may contribute to neuronal damage in neurodegenerative diseases, including Alzheimer disease, Parkinson disease, amyotrophic lateral sclerosis, and multiple sclerosis. In addition, tumor necrosis factor-alpha (TNF-alpha) secreted from activated microglia may elicit neurodegeneration through caspase-dependent cascades and silencing cell survival signals. However, direct neurotoxicity of TNF-alpha is relatively weak, because TNF-alpha also increases production of neuroprotective factors. Accordingly, it is still controversial how TNF-alpha exerts neurotoxicity in neurodegenerative diseases. Here we have shown that TNF-alpha is the key cytokine that stimulates extensive microglial glutamate release in an autocrine manner by up-regulating glutaminase to cause excitoneurotoxicity. Further, we have demonstrated that the connexin 32 hemichannel of the gap junction is another main source of glutamate release from microglia besides glutamate transporters. Although pharmacological blockade of glutamate receptors is a promising therapeutic candidate for neurodegenerative diseases, the associated perturbation of physiological glutamate signals has severe adverse side effects. The unique mechanism of microglial glutamate release that we describe here is another potential therapeutic target. We rescued neuronal cell death in vitro by using a glutaminase inhibitor or hemichannel blockers to diminish microglial glutamate release without perturbing the physiological glutamate level. These drugs may give us a new therapeutic strategy against neurodegenerative diseases with minimum adverse side effects.


Assuntos
Microglia/metabolismo , Neurônios/metabolismo , Fator de Necrose Tumoral alfa/biossíntese , Animais , Animais Recém-Nascidos , Células Cultivadas , Junções Comunicantes , Ácido Glutâmico/metabolismo , Lipopolissacarídeos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Modelos Biológicos , Doenças Neurodegenerativas/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
14.
Brain Res ; 1066(1-2): 78-85, 2005 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-16325157

RESUMO

We examined the neuroprotective role of nicergoline in neuron-microglia or neuron-astrocytes co-cultures. Nicergoline, an ergoline derivative, significantly suppressed the neuronal cell death induced by co-culture with activated microglia or astrocytes stimulated with lipopolysaccharide (LPS) and interferon (IFN)-gamma. To elucidate the mechanism by which nicergoline exerts a neuroprotective effect, we examined the production of inflammatory mediators and neurotrophic factors in activated microglia and astrocytes following nicergoline treatment. In microglia stimulated with LPS and IFN-gamma, nicergoline suppressed the production of superoxide anions, interleukin (IL)-1beta, IL-6, and tumor necrosis factor (TNF)-alpha in a dose-dependent manner. In astrocytes, nicergoline also suppressed the production of proinflammatory cytokines and enhanced brain-derived neurotrophic factor (BDNF). Thus, nicergoline-mediated neuroprotection resulted primarily from the inhibition of inflammatory mediators and the upregulation of neurotrophic factors by glial cells.


Assuntos
Astrócitos/efeitos dos fármacos , Microglia/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Nicergolina/farmacologia , Nootrópicos/farmacologia , Animais , Fator Neurotrófico Derivado do Encéfalo/biossíntese , Morte Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Técnicas de Cocultura , Citocinas/metabolismo , Imuno-Histoquímica , Ativação de Macrófagos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Fatores de Crescimento Neural/metabolismo , Superóxidos/metabolismo
15.
J Neuroimmunol ; 162(1-2): 89-96, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15833363

RESUMO

In the central nervous system (CNS), tumor necrosis factor-alpha (TNF-alpha) derived from activated microglia plays a critical role as an inflammatory mediator. In this study, we examined the function of TNF-alpha as an autocrine mediator in microglial activation. TNF-alpha induced TNF-alpha production by microglia through ligation of TNF receptor 1 (TNFR1). TNF-alpha also increased the production of other inflammatory mediators. The activation of microglia by lipopolysaccharide is partially mediated by microglia-derived TNF-alpha. These findings suggest the existence of a positive feedback loop in the activation of microglia via TNF-alpha. This autocrine loop may be involved in the prolonged activation of microglia.


Assuntos
Comunicação Autócrina/efeitos dos fármacos , Microglia/efeitos dos fármacos , Fator de Necrose Tumoral alfa/farmacologia , Fosfatase Ácida/metabolismo , Animais , Animais Recém-Nascidos , Anticorpos/farmacologia , Northern Blotting/métodos , Células Cultivadas , Citocinas/metabolismo , Relação Dose-Resposta a Droga , Interações Medicamentosas , Ensaio de Imunoadsorção Enzimática/métodos , Regulação da Expressão Gênica/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Óxido Nítrico Sintase/metabolismo , Óxido Nítrico Sintase Tipo II , RNA Mensageiro/metabolismo , Receptores do Fator de Necrose Tumoral/imunologia , Receptores Tipo I de Fatores de Necrose Tumoral , Proteínas Recombinantes/farmacologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Sais de Tetrazólio , Tiazóis , Receptores Chamariz do Fator de Necrose Tumoral , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
16.
Neuropharmacology ; 48(2): 283-90, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15695167

RESUMO

The free radical scavenger edaravone has been used as an anti-oxidative agent in acute ischemic brain disorders. We examined the effect of edaravone on the production of nitric oxide (NO), reactive oxygen species (ROS) and proinflammatory cytokines by activated microglia, and we also examined its neuroprotective role in cortical neuronal cultures oxidatively stressed by the peroxynitrite donor N-morpholinosydnonimine (SIN-1) or activated microglia. Edaravone significantly suppressed the production of NO and ROS by activated microglia, though it did not suppress production of inflammatory cytokines. In addition, edaravone significantly suppressed neuronal cell death and dendrotoxicity induced by either SIN-1 or activated microglia in a dose-dependent manner. These results suggest that edaravone may function as a neuroprotective agent counteracting oxidative neurotoxicity arising from activated microglia, as occurs in either inflammatory or neurodegenerative disorders of the central nervous system.


Assuntos
Antipirina/análogos & derivados , Antipirina/farmacologia , Sequestradores de Radicais Livres/farmacologia , Microglia/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Ácido Peroxinitroso/toxicidade , Animais , Células Cultivadas , Relação Dose-Resposta a Droga , Edaravone , Camundongos , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Estresse Oxidativo/fisiologia , Ácido Peroxinitroso/antagonistas & inibidores
17.
J Biol Chem ; 280(11): 10444-54, 2005 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-15640150

RESUMO

Recent studies suggest that excitotoxicity may contribute to neuronal damage in neurodegenerative diseases including Alzheimer disease, Parkinson disease, amyotrophic lateral sclerosis, and multiple sclerosis. Activated microglia have been observed around degenerative neurons in these diseases, and they are thought to act as effector cells in the degeneration of neural cells in the central nervous system. Neuritic beading, focal bead-like swellings in the dendrites and axons, is a neuropathological sign in epilepsy, trauma, ischemia, aging, and neurodegenerative diseases. Previous reports showed that neuritic beading is induced by various stimuli including glutamate or nitric oxide and is a neuronal response to harmful stimuli. However, the precise physiologic significance of neuritic beading is unclear. We provide evidence that neuritic beading induced by activated microglia is a feature of neuronal cell dysfunction toward neuronal death, and the neurotoxicity of activated microglia is mediated through N-methyl-d-aspartate (NMDA) receptor signaling. Neuritic beading occurred concordant with a rapid drop in intracellular ATP levels and preceded neuronal death. The actual neurite beads consisted of collapsed cytoskeletal proteins and motor proteins arising from impaired neuronal transport secondary to cellular energy loss. The drop in intracellular ATP levels was because of the inhibition of mitochondrial respiratory chain complex IV activity downstream of NMDA receptor signaling. Blockage of NMDA receptors nearly completely abrogated mitochondrial dysfunction and neurotoxicity. Thus, neuritic beading induced by activated microglia occurs through NMDA receptor signaling and represents neuronal cell dysfunction preceding neuronal death. Blockage of NMDA receptors may be an effective therapeutic approach for neurodegenerative diseases.


Assuntos
Axônios/metabolismo , Microglia/metabolismo , Neurônios/metabolismo , Consumo de Oxigênio , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Animais , Apoptose , Transporte Biológico , Morte Celular , Meios de Cultivo Condicionados/farmacologia , Citoplasma/metabolismo , Citoesqueleto/metabolismo , Relação Dose-Resposta a Droga , Ácido Glutâmico/metabolismo , Processamento de Imagem Assistida por Computador , Imuno-Histoquímica , Marcação In Situ das Extremidades Cortadas , Cinesinas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Confocal , Mitocôndrias/metabolismo , Neurônios/patologia , Óxido Nítrico/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Transdução de Sinais , Fatores de Tempo
18.
Primates ; 44(2): 177-82, 2003 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12687483

RESUMO

Motion is one of the most efficient cues for shape perception. We conducted behavioral experiments to examine how monkeys perceive shapes defined by motion cues and whether they perceive them as humans do. We trained monkeys to perform a shape discrimination task in which shapes were defined by the motion of random dots. Effects of dot density and dot speed on the shape perception of monkeys were examined. Human subjects were also tested using the same paradigm and the test results were compared with those of monkeys. In both monkeys and humans, correct performance rates declined when density or speed of random dots was reduced. Both of them tended to confuse the same combinations of shapes frequently. These results suggest that monkeys and humans perceive shapes defined by motion cues in a similar manner and probably have common neural mechanisms to perceive them.


Assuntos
Percepção de Forma/fisiologia , Macaca/fisiologia , Percepção de Movimento/fisiologia , Adulto , Animais , Sinais (Psicologia) , Discriminação Psicológica , Feminino , Humanos , Masculino , Tempo de Reação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...