Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Comput Biol ; 18(10): e1010536, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36215324

RESUMO

Biological systems are noisy by nature. This aspect is reflected in our experimental measurements and should be reflected in the models we build to better understand these systems. Noise can be especially consequential when trying to interpret specific regulatory interactions, i.e. regulatory network edges. In this paper, we propose a method to explicitly encode edge-noise in Boolean dynamical systems by probabilistic edge-weight (PEW) operators. PEW operators have two important features: first, they introduce a form of edge-weight into Boolean models through the noise, second, the noise is dependent on the dynamical state of the system, which enables more biologically meaningful modeling choices. Moreover, we offer a simple-to-use implementation in the already well-established BooleanNet framework. In two application cases, we show how the introduction of just a few PEW operators in Boolean models can fine-tune the emergent dynamics and increase the accuracy of qualitative predictions. This includes fine-tuning interactions which cause non-biological behaviors when switching between asynchronous and synchronous update schemes in dynamical simulations. Moreover, PEW operators also open the way to encode more exotic cellular dynamics, such as cellular learning, and to implementing edge-weights for regulatory networks inferred from omics data.


Assuntos
Redes Reguladoras de Genes
2.
NPJ Syst Biol Appl ; 8(1): 19, 2022 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-35680961

RESUMO

Regulation of translocating proteins is crucial in defining cellular behaviour. Epithelial-mesenchymal transition (EMT) is important in cellular processes, such as cancer progression. Several orchestrators of EMT, such as key transcription factors, are known to translocate. We show that translocating proteins become enriched in EMT-signalling. To simulate the compartment-specific functions of translocating proteins we created a compartmentalized Boolean network model. This model successfully reproduced known biological traits of EMT and as a novel feature it also captured organelle-specific functions of proteins. Our results predicted that glycogen synthase kinase-3 beta (GSK3B) compartment-specifically alters the fate of EMT, amongst others the activation of nuclear GSK3B halts transforming growth factor beta-1 (TGFB) induced EMT. Moreover, our results recapitulated that the nuclear activation of glioma associated oncogene transcription factors (GLI) is needed to achieve a complete EMT. Compartmentalized network models will be useful to uncover novel control mechanisms of biological processes. Our algorithmic procedures can be automatically rerun on the https://translocaboole.linkgroup.hu website, which provides a framework for similar future studies.


Assuntos
Transição Epitelial-Mesenquimal , Neoplasias , Transição Epitelial-Mesenquimal/genética , Humanos , Transdução de Sinais/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
3.
Trends Biochem Sci ; 45(4): 284-294, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32008897

RESUMO

Molecular processes of neuronal learning have been well described. However, learning mechanisms of non-neuronal cells are not yet fully understood at the molecular level. Here, we discuss molecular mechanisms of cellular learning, including conformational memory of intrinsically disordered proteins (IDPs) and prions, signaling cascades, protein translocation, RNAs [miRNA and long noncoding RNA (lncRNA)], and chromatin memory. We hypothesize that these processes constitute the learning of signaling networks and correspond to a generalized Hebbian learning process of single, non-neuronal cells, and we discuss how cellular learning may open novel directions in drug design and inspire new artificial intelligence methods.


Assuntos
Cromatina/metabolismo , Proteínas Intrinsicamente Desordenadas/metabolismo , Neurônios/metabolismo , RNA/metabolismo , Transdução de Sinais , Animais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...