Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Chem (Oxf) ; 5: 100137, 2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36164490

RESUMO

There is a dogma within whey protein modification, which dictates the necessity of pretreatment to enzymatic cross-linking of ß-lactoglobulin (ß-Lg). Here microbial transglutaminase (MTG) cross-linked whey proteins and ß-Lg effectively in 50 mM NaHCO3, pH 8.5, without pretreatment. Cross-linked ß-Lg spanned 18 to >240 kDa, where 6 of 9 glutamines reacted with 8 of 15 lysines. The initial isopeptide bond formation caused loss of ß-Lg native structure with t1/2 = 3 h, while the polymerization occurred with t1/2 = 10 h. Further, cross-linking effects on protein carbohydrate interaction have been overlooked, leaving a gap in understanding of these complex food matrices. Complexation with alginate showed that ß-Lg cross-linking decreased onset of particle formation, hydrodynamic diameter, stoichiometry (ß-Lg/alginate) and dissociation constant. The complexation was favored at higher temperatures (40 °C), suggesting that hydrophobic interactions were important. Thus, ß-Lg was cross-linked without pretreatment and the resulting polymers gave rise to altered complexation with alginate.

2.
Chemistry ; 26(32): 7263-7273, 2020 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-32189378

RESUMO

Broad and unspecific use of antibiotics accelerates spread of resistances. Sensitive and robust pathogen detection is thus important for a more targeted application. Bacteriophages contain a large repertoire of pathogen-binding proteins. These tailspike proteins (TSP) often bind surface glycans and represent a promising design platform for specific pathogen sensors. We analysed bacteriophage Sf6 TSP that recognizes the O-polysaccharide of dysentery-causing Shigella flexneri to develop variants with increased sensitivity for sensor applications. Ligand polyrhamnose backbone conformations were obtained from 2D 1 H,1 H-trNOESY NMR utilizing methine-methine and methine-methyl correlations. They agreed well with conformations obtained from molecular dynamics (MD), validating the method for further predictions. In a set of mutants, MD predicted ligand flexibilities that were in good correlation with binding strength as confirmed on immobilized S. flexneri O-polysaccharide (PS) with surface plasmon resonance. In silico approaches combined with rapid screening on PS surfaces hence provide valuable strategies for TSP-based pathogen sensor design.


Assuntos
Bacteriófagos/química , Antígenos O/química , Shigella flexneri/química , Proteínas da Cauda Viral/química , Sítios de Ligação , Glicosídeo Hidrolases , Ligantes , Simulação de Dinâmica Molecular , Proteínas da Cauda Viral/metabolismo
3.
Adv Sci (Weinh) ; 5(8): 1800432, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30128249

RESUMO

Biomembranes are constantly remodeled and in cells, these processes are controlled and modulated by an assortment of membrane proteins. Here, it is shown that such remodeling can also be induced by photoresponsive molecules. The morphological control of giant vesicles in the presence of a water-soluble ortho-tetrafluoroazobenzene photoswitch (F-azo) is demonstrated and it is shown that the shape transformations are based on an increase in membrane area and generation of spontaneous curvature. The vesicles exhibit budding and the buds can be retracted by using light of a different wavelength. In the presence of F-azo, the membrane area can increase by more than 5% as assessed from vesicle electrodeformation. To elucidate the underlying molecular mechanism and the partitioning of F-azo in the membrane, molecular dynamics simulations are employed. Comparison with theoretically calculated shapes reveals that the budded shapes are governed by curvature elasticity, that the spontaneous curvature can be decomposed into a local and a nonlocal contribution, and that the local spontaneous curvature is about 1/(2.5 µm). The results show that exo- and endocytotic events can be controlled by light and that these photoinduced processes provide an attractive method to change membrane area and morphology.

4.
Viruses ; 10(8)2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-30111705

RESUMO

Bacteriophage research is gaining more importance due to increasing antibiotic resistance. However, for treatment with bacteriophages, diagnostics have to be improved. Bacteriophages carry adhesion proteins, which bind to the bacterial cell surface, for example tailspike proteins (TSP) for specific recognition of bacterial O-antigen polysaccharide. TSP are highly stable proteins and thus might be suitable components for the integration into diagnostic tools. We used the TSP of bacteriophage Sf6 to establish two applications for detecting Shigella flexneri (S. flexneri), a highly contagious pathogen causing dysentery. We found that Sf6TSP not only bound O-antigen of S. flexneri serotype Y, but also the glucosylated O-antigen of serotype 2a. Moreover, mass spectrometry glycan analyses showed that Sf6TSP tolerated various O-acetyl modifications on these O-antigens. We established a microtiter plate-based ELISA like tailspike adsorption assay (ELITA) using a Strep-tag®II modified Sf6TSP. As sensitive screening alternative we produced a fluorescently labeled Sf6TSP via coupling to an environment sensitive dye. Binding of this probe to the S. flexneri O-antigen Y elicited a fluorescence intensity increase of 80% with an emission maximum in the visible light range. The Sf6TSP probes thus offer a promising route to a highly specific and sensitive bacteriophage TSP-based Shigella detection system.


Assuntos
Técnicas de Tipagem Bacteriana , Bacteriófagos/química , Bioensaio , Antígenos O/química , Podoviridae/química , Shigella flexneri/isolamento & purificação , Proteínas da Cauda Viral/química , Bacteriófagos/genética , Bacteriófagos/metabolismo , Sequência de Carboidratos , Clonagem Molecular , Ensaio de Imunoadsorção Enzimática , Escherichia coli/genética , Escherichia coli/metabolismo , Corantes Fluorescentes/química , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Glicosídeo Hidrolases , Modelos Moleculares , Antígenos O/metabolismo , Oxidiazóis/química , Podoviridae/genética , Podoviridae/metabolismo , Ligação Proteica , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Sorogrupo , Shigella flexneri/química , Shigella flexneri/metabolismo , Coloração e Rotulagem/métodos , Proteínas da Cauda Viral/genética , Proteínas da Cauda Viral/metabolismo
5.
J Am Chem Soc ; 140(33): 10447-10455, 2018 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-30044908

RESUMO

The principles of protein-glycan binding are still not well understood on a molecular level. Attempts to link affinity and specificity of glycan recognition to structure suffer from the general lack of model systems for experimental studies and the difficulty to describe the influence of solvent. We have experimentally and computationally addressed energetic contributions of solvent in protein-glycan complex formation in the tailspike protein (TSP) of E. coli bacteriophage HK620. HK620TSP is a 230 kDa native trimer of right-handed, parallel beta-helices that provide extended, rigid binding sites for bacterial cell surface O-antigen polysaccharides. A set of high-affinity mutants bound hexa- or pentasaccharide O-antigen fragments with very similar affinities even though hexasaccharides introduce an additional glucose branch into an occluded protein surface cavity. Remarkably different thermodynamic binding signatures were found for different mutants; however, crystal structure analyses indicated that no major oligosaccharide or protein topology changes had occurred upon complex formation. This pointed to a solvent effect. Molecular dynamics simulations using a mobility-based approach revealed an extended network of solvent positions distributed over the entire oligosaccharide binding site. However, free energy calculations showed that a small water network inside the glucose-binding cavity had the most notable influence on the thermodynamic signature. The energy needed to displace water from the glucose binding pocket depended on the amino acid at the entrance, in agreement with the different amounts of enthalpy-entropy compensation found for introducing glucose into the pocket in the different mutants. Studies with small molecule drugs have shown before that a few active water molecules can control protein complex formation. HK620TSP oligosaccharide binding shows that similar fundamental principles also apply for glycans, where a small number of water molecules can dominate the thermodynamic signature in an extended binding site.


Assuntos
Oligossacarídeos/química , Proteínas/química , Solventes/química , Termodinâmica , Sítios de Ligação , Colífagos/química , Cristalografia por Raios X , Glicosídeo Hidrolases , Simulação de Dinâmica Molecular , Conformação Proteica , Proteínas da Cauda Viral/química
6.
J Am Chem Soc ; 138(29): 9109-18, 2016 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-27045683

RESUMO

Understanding interactions of bacterial surface polysaccharides with receptor protein scaffolds is important for the development of antibiotic therapies. The corresponding protein recognition domains frequently form low-affinity complexes with polysaccharides that are difficult to address with experimental techniques due to the conformational flexibility of the polysaccharide. In this work, we studied the tailspike protein (TSP) of the bacteriophage Sf6. Sf6TSP binds and hydrolyzes the high-rhamnose, serotype Y O-antigen polysaccharide of the Gram-negative bacterium Shigella flexneri (S. flexneri) as a first step of bacteriophage infection. Spectroscopic analyses and enzymatic cleavage assays confirmed that Sf6TSP binds long stretches of this polysaccharide. Crystal structure analysis and saturation transfer difference (STD) NMR spectroscopy using an enhanced method to interpret the data permitted the detailed description of affinity contributions and flexibility in an Sf6TSP-octasaccharide complex. Dodecasaccharide fragments corresponding to three repeating units of the O-antigen in complex with Sf6TSP were studied computationally by molecular dynamics simulations. They showed that distortion away from the low-energy solution conformation found in the octasaccharide complex is necessary for ligand binding. This is in agreement with a weak-affinity functional polysaccharide-protein contact that facilitates correct placement and thus hydrolysis of the polysaccharide close to the catalytic residues. Our simulations stress that the flexibility of glycan epitopes together with a small number of specific protein contacts provide the driving force for Sf6TSP-polysaccharide complex formation in an overall weak-affinity interaction system.


Assuntos
Bacteriófagos , Simulação de Dinâmica Molecular , Antígenos O/metabolismo , Shigella flexneri/química , Proteínas da Cauda Viral/metabolismo , Sítios de Ligação , Glicosídeo Hidrolases , Antígenos O/química , Ligação Proteica , Conformação Proteica , Proteínas da Cauda Viral/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...