Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Toxicol Chem ; 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38887151

RESUMO

Effect concentrations of ammonia, nickel, sodium chloride, and potassium chloride from short-term 7-day tests were compared to those from standard chronic 28-day toxicity tests with juvenile mussels (fatmucket, Lampsilis siliquoidea) to evaluate the sensitivities of the 7-day tests. The effect concentrations for nickel (59 µg Ni/L), chloride (316-519 mg Cl/L, a range from multiple tests), and potassium (15 mg K/L) obtained from the 7-day tests were within a range of effect concentrations for each corresponding chemical in the 28-day tests (41-91 µg Ni/L, 251->676 mg Cl/L, 15-23 mg K/L), whereas the 7-day ammonia effect concentration (0.40 mg/L total ammonia nitrogen; TAN) was up to 3.3-fold greater than the 28-day effect concentrations (0.12-0.36 mg TAN/L) but with overlapped 95% confidence limits. These results indicate that the 7-day tests produced similar estimates compared to the 28-day tests. Further studies are needed to evaluate the 7-day test sensitivity using additional chemicals with different modes of toxic action. Environ Toxicol Chem 2024;00:1-6. Published 2024. This article is a U.S. Government work and is in the public domain in the USA.

2.
Environ Toxicol Chem ; 43(5): 1097-1111, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38488680

RESUMO

The ASTM International standard test method for freshwater mussels (E2455-13) recommends 4-week toxicity testing with juveniles to evaluate chronic effects on survival and growth. However, concerns remain that the method may not adequately address the sensitivity of mussels to longer term exposures (>4 weeks), particularly in relation to potential reproductive impairments. No standard method directly evaluates toxicant effects on mussel reproduction. The objectives of the present study were to (1) evaluate toxicity endpoints related to reproduction in fatmucket (Lampsilis siliquoidea) using two common reference toxicants, potassium chloride (KCl) and nickel (Ni); (2) evaluate the survival and growth of juvenile fatmucket in standard 4-week and longer term (12-week) KCl and Ni tests following a method refined from the standard method; and (3) compare the sensitivity of the reproductive endpoints with the endpoints obtained from the juvenile mussel tests. Reproductive toxicity tests were conducted by first exposing female fatmucket brooding mature larvae (glochidia) to five test concentrations of KCl and Ni for 6 weeks. Subsamples of the glochidia were then removed from the adults to determine three reproductive endpoints: (1) the viability of brooded glochidia; (2) the viability of free glochidia in a 24-h exposure to the same toxicant concentrations as their mother; and (3) the success of glochidia parasitism on host fish. Mean viability of brooded glochidia was significantly reduced in the high KCl concentration (26 mg K/L) relative to the control, with a 20% effect concentration (EC20) of 14 mg K/L, but there were no significant differences between the control and any Ni treatment (EC20 > 95 µg Ni/L). The EC20s for viability of free glochidia after the additional 24-h exposure and parasitism success were similar to the EC20s of brooded glochidia. The EC20s based on the most sensitive biomass endpoint in the 4-week juvenile tests were 15 mg K/L and 91 µg Ni/L, similar to or greater than the EC20s from the reproductive KCl and Ni tests, respectively. When exposure duration in the juvenile tests was extended from 4 to 12 weeks, the EC20s decreased by more than 50% in the KCl test but by only 8% in the Ni test. Overall, these results indicate that a standard 4-week test with juvenile mussels can prove effective for estimating effects in chronic exposures with different life stages although a longer term 12-week exposure with juvenile mussels may reveal higher sensitivity of mussels to some toxicants, such as KCl. Environ Toxicol Chem 2024;43:1097-1111. © 2024 SETAC. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.


Assuntos
Níquel , Cloreto de Potássio , Reprodução , Poluentes Químicos da Água , Animais , Níquel/toxicidade , Reprodução/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Cloreto de Potássio/toxicidade , Feminino , Bivalves/efeitos dos fármacos , Bivalves/crescimento & desenvolvimento , Unionidae/efeitos dos fármacos , Unionidae/crescimento & desenvolvimento
3.
Environ Toxicol Chem ; 42(5): 1085-1093, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36856127

RESUMO

Elevated concentrations of potassium (K) often occur in effluents from wastewater treatment plants, oil and gas production operations, mineral extraction processes, and other anthropogenic sources. Previous studies have demonstrated that freshwater mussels are highly sensitive to K in acute and chronic exposures, and that acute toxicity of K decreases with increasing water hardness. However, little is known about the influence of hardness on the chronic toxicity of K. The objective of our study was to evaluate the chronic toxicity of K (tested as KCl) to a commonly tested unionid mussel (fatmucket, Lampsilis siliquoidea) at five hardness levels (25, 50, 100, 200, and 300 mg/L as CaCO3 ) representing most surface waters in the United States. Chronic 28-day K toxicity tests were conducted with 3-week-old juvenile fatmucket in the five hardness waters using an ASTM International standard method. The maximum acceptable toxicant concentrations (geometric mean of the no-observed-effect concentration and the lowest-observed-effect concentration) increased from 15.1 to 69.3 mg K/L for survival and from 15.1 to 35.8 mg K/L for growth (length and dry wt) and biomass when water hardness was increased from 25 mg/L (soft) to 300 mg/L (very hard). These results provide evidence to support water hardness influence on chronic K toxicity to juvenile fatmucket. However, the chronic effect concentrations based on the more sensitive endpoint (growth or biomass) increased only 2.4-fold from the soft water to the very hard water, indicating that water hardness had a limited influence on the chronic toxicity of K to the mussels. These results can be used to establish chronic toxicity thresholds for K across a broad range of water hardness and to derive environmental guideline values for K to protect freshwater mussels and other organisms. Environ Toxicol Chem 2023;42:1085-1093. Published 2023. This article is a U.S. Government work and is in the public domain in the USA.


Assuntos
Bivalves , Unionidae , Poluentes Químicos da Água , Animais , Água , Cloreto de Potássio/toxicidade , Dureza , Poluentes Químicos da Água/toxicidade
4.
Environ Toxicol Chem ; 40(12): 3392-3409, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34592004

RESUMO

The US Environmental Protection Agency's short-term freshwater effluent test methods include a fish (Pimephales promelas), a cladoceran (Ceriodaphnia dubia), and a green alga (Raphidocelis subcapitata). There is a recognized need for additional taxa to accompany the three standard species for effluent testing. An appropriate additional taxon is unionid mussels because mussels are widely distributed, live burrowed in sediment and filter particles from the water column for food, and exhibit high sensitivity to a variety of contaminants. Multiple studies were conducted to develop a relevant and robust short-term test method for mussels. We first evaluated the comparative sensitivity of two mussel species (Villosa constricta and Lampsilis siliquoidea) and two standard species (P. promelas and C. dubia) using two mock effluents prepared by mixing ammonia and five metals (cadmium, copper, nickel, lead, and zinc) or a field-collected effluent in 7-day exposures. Both mussel species were equally or more sensitive (more than two-fold) to effluents compared with the standard species. Next, we refined the mussel test method by first determining the best feeding rate of a commercial algal mixture for three age groups (1, 2, and 3 weeks old) of L. siliquoidea in a 7-day feeding experiment, and then used the derived optimal feeding rates to assess the sensitivity of the three ages of juveniles in a 7-day reference toxicant (sodium chloride [NaCl]) test. Juvenile mussels grew substantially (30%-52% length increase) when the 1- or 2-week-old mussels were fed 2 ml twice daily and the 3-week-old mussels were fed 3 ml twice daily. The 25% inhibition concentrations (IC25s) for NaCl were similar (314-520 mg Cl/L) among the three age groups, indicating that an age range of 1- to 3-week-old mussels can be used for a 7-day test. Finally, using the refined test method, we conducted an interlaboratory study among 13 laboratories to evaluate the performance of a 7-day NaCl test with L. siliquoidea. Eleven laboratories successfully completed the test, with more than 80% control survival and reliable growth data. The IC25s ranged from 296 to 1076 mg Cl/L, with a low (34%) coefficient of variation, indicating that the proposed method for L. siliquoidea has acceptable precision. Environ Toxicol Chem 2021;40:3392-3409. © 2021 SETAC.


Assuntos
Bivalves , Unionidae , Poluentes Químicos da Água , Animais , Água Doce , Testes de Toxicidade , Poluentes Químicos da Água/toxicidade
5.
Environ Toxicol Chem ; 40(12): 3410-3420, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34559934

RESUMO

Freshwater mussels are one of the most imperiled groups of animals in the world and are among the most sensitive species to a variety of chemicals. However, little is known about the sensitivity of freshwater mussels to wastewater effluents. The objectives of the present study were to (1) assess the toxicity of a permitted effluent, which entered the Deep Fork River, Oklahoma (USA), to a unionid mussel (Lampsilis siliquoidea) and to two standard test species (cladoceran Ceriodaphnia dubia; and fathead minnow Pimephales promelas) in short-term 7-day effluent tests; (2) evaluate the relative sensitivities of the three species to potassium (K), an elevated major ion in the effluent, using 7-day toxicity tests with KCl spiked into a Deep Fork River upstream reference water; (3) determine the potential influences of background water characteristics on the acute K toxicity to the mussel (96-h exposures) and cladoceran (48-h exposure) in four reconstituted waters that mimicked the hardness and ionic composition ranges of the Deep Fork River; and (4) determine the potential influence of temperature on acute K toxicity to the mussel. The effluent was found to be toxic to mussels and cladocerans, and it contained elevated concentrations of major cations and anions relative to the upstream Deep Fork River reference water. The K concentration in the effluent was 48-fold greater than in the upstream water. Compared with the standard species, the mussel was more than 4-fold more sensitive to the effluent in the 7-day effluent tests and more than 8-fold more sensitive to K in the 7-day K toxicity tests. The acute K toxicity to the mussel decreased by a factor of 2 when the water hardness was increased from soft (42 mg/L as CaCO3 ) to very hard (314 mg/L as CaCO3 ), whereas the acute K toxicity to the cladoceran remained almost the same as hardness increased from 84 to 307 mg/L as CaCO3 . Acute K toxicity to the mussel at 23 °C was similar to the toxicity at an elevated temperature of 28 °C. The overall results indicate that the two standard test species may not represent the sensitivity of the tested mussel to both the effluent and K, and the toxicity of K was influenced by the hardness in test waters, but by a limited magnitude. Environ Toxicol Chem 2021;40:3410-3420. Published 2021. This article is a U.S. Government work and is in the public domain in the USA.


Assuntos
Bivalves , Unionidae , Poluentes Químicos da Água , Animais , Potássio , Testes de Toxicidade Crônica , Poluentes Químicos da Água/toxicidade
6.
Environ Toxicol Chem ; 39(11): 2256-2268, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32761946

RESUMO

The US Environmental Protection Agency (USEPA) is reviewing the protectiveness of the national ambient water quality criteria (WQC) for nickel (Ni) and zinc (Zn) and compiling toxicity databases to update the WQC. An amphipod (Hyalella azteca) and a unionid mussel (Lampsilis siliquoidea) have shown high sensitivity to Ni and Zn in previous studies. However, there remained uncertainties regarding the influence of test duration (48 vs 96 h) and the presence and absence of food in acute exposures with the amphipod, and there were also concerns about poor control of amphipod growth and reproduction and mussel growth in chronic exposures. We conducted acute 48- and 96-h water-only toxicity tests to evaluate the influence of feeding and test durations on the toxicity of dissolved Ni and Zn to the amphipod; we also used recently refined test methods to conduct chronic Ni and Zn toxicity tests to evaluate the sensitivity of the amphipod (6-wk exposure) and the mussel (4- and 12-wk exposures). The 96-h 50% effect concentrations (EC50s) of 916 µg Ni/L and 99 µg Zn/L from acute amphipod tests without feeding decreased from the 48-h EC50s by 62 and 33%, respectively, whereas the 96-h EC50s of 2732 µg Ni/L and 194 µg Zn/L from the tests with feeding decreased from the 48-h EC50s by 10 and 26%, indicating that the presence or absence of food had apparent implications for the 96-h EC50. Our chronic 6-wk EC20s for the amphipod (4.5 µg Ni/L and 35 µg Zn/L) were 50 to 67% lower than the 6-wk EC20s from previous amphipod tests, and our chronic 4-wk EC20s for the mussel (41 µg Ni/L and 66 µg Zn/L) were similar to or up to 42% lower than the 4-wk EC20s from previous mussel tests. The lower EC20s from the present study likely reflect more accurate estimates of inherent sensitivity to Ni and Zn due to the refined test conditions. Finally, increasing the chronic test duration from 4 to 12 wk substantially increased the toxicity of Zn to the mussel, whereas the 4- and 12-wk Ni effect needs to be re-evaluated to understand the large degree of variation in organism responses observed in the present study. Environ Toxicol Chem 2020;39:2256-2268. © 2020 SETAC.


Assuntos
Anfípodes/efeitos dos fármacos , Bivalves/efeitos dos fármacos , Níquel/toxicidade , Testes de Toxicidade Aguda/métodos , Testes de Toxicidade Crônica/métodos , Poluentes Químicos da Água/toxicidade , Zinco/toxicidade , Anfípodes/crescimento & desenvolvimento , Anfípodes/fisiologia , Animais , Bivalves/fisiologia , Feminino , Larva/efeitos dos fármacos , Larva/fisiologia , Poluentes Químicos da Água/química , Qualidade da Água
7.
Arch Environ Contam Toxicol ; 76(4): 670-677, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30850858

RESUMO

Produced water (PW) from oil and gas extraction processes has been shown to contain elevated concentrations of major ions. The objective of this study was to determine the potential effects of elevated major ions in PW-contaminated surface water on a fish (fathead minnow, Pimephales promelas) and a unionid mussel (fatmucket, Lampsilis siliquoidea) in short-term (7-day) exposures. The test organisms were exposed in 3 reconstituted waters formulated with 1, 2, and 4 times the major ions measured at a PW-contaminated stream site 1 month after a PW spill from an oil production wastewater pipeline in the Williston Basin, North Dakota. A reconstituted water mimicking the ionic composition of an upstream site from the spill was used as a reference water. Significant reductions in survival and growth of the fish were observed in the 4× treatment compared with the reference. The mussels were more sensitive than the fish, with significant reductions in survival in the 2× and 4× treatments, and significant reductions in length in the 1× and 2× treatments. Overall, these results indicate that elevated concentrations of major ions in PW-contaminated surface waters could adversely affect the fish and mussels tested and potentially other aquatic organisms.


Assuntos
Cyprinidae/crescimento & desenvolvimento , Campos de Petróleo e Gás , Rios/química , Unionidae/efeitos dos fármacos , Águas Residuárias/química , Poluentes Químicos da Água/toxicidade , Animais , Íons , Testes de Toxicidade , Unionidae/crescimento & desenvolvimento , Poluentes Químicos da Água/análise
8.
Environ Toxicol Chem ; 37(12): 3102-3114, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30239039

RESUMO

Sediments from the Upper Columbia River, Washington, USA, are contaminated with metals from smelting operations. We conducted short-term and long-term tests with the midge Chironomus dilutus and the amphipod Hyalella azteca and short-term tests with the freshwater mussel Lampsilis siliquoidea with 54 sediments from the Upper Columbia River to characterize thresholds for toxicity of metals to benthic invertebrates. Test sediments were screened for toxicity by comparisons with low-metal reference sediments. Toxic effects on amphipods occurred primarily in sediments from the upstream (riverine) reach, and toxic effects on midges occurred in sediments from both the upstream reach and the downstream (reservoir) reach. Little toxicity was observed in mussel tests. Toxicity thresholds (20% effect concentrations [EC20s]) for metals in sediment and porewater were estimated from logistic concentration-response models. Copper (Cu) concentrations in the simultaneously extracted metal fraction of sediments and bioavailable Cu in porewater, as characterized by biotic ligand models, had consistent associations with toxicity endpoints. Concentration-response models for sediment Cu produced EC20s for 6 endpoints, with long-term amphipod survival and reproduction being the most sensitive. A logistic regression model fitted to an endpoint sensitivity distribution for sediment Cu predicted that approximately one-half of the sediments tested would be toxic to at least one endpoint and that approximately 20% of test sediments would be toxic to more than half of the endpoints. These results indicate that sediments from the upstream reach of the Upper Columbia River, which contain high concentrations of metals associated with slags, cause a wide range of toxic effects in laboratory tests and are likely to have adverse effects on benthic invertebrate communities. Environ Toxicol Chem 2018;37:3102-3114. Published 2018 Wiley Periodicals Inc. on behalf of SETAC. This article is a US government work and, as such, is in the public domain in the United States of America.


Assuntos
Ecossistema , Sedimentos Geológicos/química , Invertebrados/efeitos dos fármacos , Rios/química , Testes de Toxicidade , Poluentes Químicos da Água/toxicidade , Anfípodes/efeitos dos fármacos , Animais , Bivalves/efeitos dos fármacos , Chironomidae/efeitos dos fármacos , Água Doce , Metais/toxicidade , Porosidade , Análise de Componente Principal , Washington
9.
Environ Toxicol Chem ; 37(12): 3050-3062, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30129053

RESUMO

Freshwater mussels are generally underrepresented in toxicity databases used to derive water quality criteria, especially for long-term exposures. Multiple tests were conducted to determine the chronic toxicity of sodium chloride (NaCl) or potassium chloride (KCl) to a unionid mussel (fatmucket, Lampsilis siliquoidea). Initially, a 4-wk NaCl test and a 4-wk KCl test were conducted starting with 2-mo-old mussels in water exposures with and without a thin layer of sand substrate. A feeding study was conducted later to refine test conditions for longer-term 12-wk exposures, and 3 chronic NaCl tests were then conducted following the refined method to assess the influence of test duration (4-12 wk) and age of organisms (starting age ∼1 wk to 2 mo) on mussel sensitivity. Biomass (total dry wt of surviving mussels in a replicate) was generally a more sensitive endpoint compared to survival and growth (length and dry wt). In the 4-wk NaCl or KCl test started with 2-mo-old juveniles, a 20% effect concentration (EC20) based on biomass (264 mg Cl/L from the NaCl test or 8.7 mg K/L from the KCl test) in the exposure with sand was 2-fold lower than the EC20 in the exposure without sand. The longer-term 12-wk NaCl tests started with the 1-wk-old and 2-mo-old juveniles were successfully completed under refined test conditions based on the feeding study, and younger juveniles were more sensitive to NaCl than older juveniles. The NaCl toxicity did not substantially change with extended exposure periods from 4 to 12 wk, although the 4-wk EC20s for biomass were slightly greater (up to 37%) than the 12-wk EC20s in the 2 longer-term exposures. Including the toxicity data from the present study into existing databases would rank fatmucket the most sensitive species to KCl and the second most sensitive species to NaCl for all freshwater organisms. Environ Toxicol Chem 2018;37:3050-3062. Published 2018 Wiley Periodicals Inc. on behalf of SETAC. This article is a US government work and, as such, is in the public domain in the United States of America.


Assuntos
Bivalves/efeitos dos fármacos , Exposição Ambiental , Cloreto de Potássio/toxicidade , Cloreto de Sódio/toxicidade , Testes de Toxicidade Crônica , Poluentes Químicos da Água/toxicidade , Animais , Feminino , Padrões de Referência , Qualidade da Água
10.
Environ Toxicol Chem ; 36(9): 2308-2315, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28181697

RESUMO

Understanding the effects of fungicides on nontarget organisms at realistic concentrations and exposure durations is vital for determining potential impacts on aquatic ecosystems. Environmental concentrations of the fungicide azoxystrobin have been reported up to 4.6 µg/L in the United States and 30 µg/L in Europe. The objective of the present study was to evaluate the chronic toxicity of azoxystrobin in water-only exposures with an amphipod (Hyalella azteca; 42-d exposure), a midge (Chironomus dilutus; 50-d exposure), a cladoceran (Ceriodaphnia dubia; 7-d exposure), and a unionid mussel (Lampsilis siliquoidea; 28-d exposure) at environmentally relevant concentrations. The potential photo-enhanced toxicity of azoxystrobin accumulated by C. dubia and L. siliquoidea following chronic exposures to azoxystrobin was also evaluated. The 20% effect concentrations (EC20s) based on the most sensitive endpoint were 4.2 µg/L for H. azteca reproduction, 12 µg/L for C. dubia reproduction and C. dilutus emergence, and >28 µg/L for L. siliquoidea. Hyalella azteca was more sensitive to azoxystrobin compared with the other 3 species in the chronic exposures. No photo-enhanced toxicity was observed for either C. dubia or L. siliquoidea exposed to ultraviolet light in control water following azoxystrobin tests. The results of the present study indicate chronic effects of azoxystrobin on 3 of 4 invertebrates tested at environmentally relevant concentrations. The changes noted in biomass and reproduction have the potential to alter the rate of ecological processes driven by aquatic invertebrates. Environ Toxicol Chem 2017;36:2308-2315. Published 2017 Wiley Periodicals Inc. on behalf of SETAC. This article is a US government work and, as such, is in the public domain in the United States of America.


Assuntos
Anfípodes/efeitos dos fármacos , Chironomidae/efeitos dos fármacos , Cladocera/efeitos dos fármacos , Fungicidas Industriais/toxicidade , Pirimidinas/toxicidade , Estrobilurinas/toxicidade , Unionidae/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Animais , Biomassa , Água Doce , Testes de Toxicidade Crônica
11.
Arch Environ Contam Toxicol ; 72(3): 449-460, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28238046

RESUMO

The objectives of the present study were to develop methods for propagating western pearlshell (Margaritifera falcata) for laboratory toxicity testing and evaluate acute and chronic toxicity of chromium VI [Cr(VI)] to the pearlshell and a commonly tested mussel (fatmucket, Lampsilis siliquoidea at 20 °C or in association with a co-stressor of elevated temperature (27 °C), zinc (50 µg Zn/L), or nitrate (35 mg NO3/L). A commonly tested invertebrate (amphipod, Hyalella azteca) also was tested in chronic exposures. Newly transformed pearlshell (~1 week old) were successfully cultured and tested in acute 96 h Cr exposures (control survival 100%). However, the grow-out of juveniles in culture for chronic toxicity testing was less successful and chronic 28-day Cr toxicity tests started with 4 month-old pearlshell failed due to low control survival (39-68%). Acute median effect concentration (EC50) for the pearlshell (919 µg Cr/L) and fatmucket (456 µg Cr/L) tested at 20 °C without a co-stressor decreased by a factor of > 2 at elevated temperature but did not decrease at elevated Zn or elevated NO3. Chronic 28-day Cr tests were completed successfully with the fatmucket and amphipod (control survival 83-98%). Chronic maximum acceptable toxicant concentration (MATC) for fatmucket at 20 °C (26 µg Cr/L) decreased by a factor of 2 at elevated temperature or NO3 but did not decrease at elevated Zn. However, chronic MATC for amphipod at 20 °C (13 µg Cr/L) did not decrease at elevated temperature, Zn, or NO3. Acute EC50s for both mussels tested with or without a co-stressor were above the final acute value used to derive United States Environmental Protection Agency acute water quality criterion (WQC) for Cr(VI); however, chronic MATCs for fatmucket at elevated temperature or NO3 and chronic MATCs for the amphipod at 20 °C with or without elevated Zn or NO3 were about equal to the chronic WQC. The results indicate that (1) the elevated temperature increased the acute Cr toxicity to both mussel species, (2) fatmucket was acutely more sensitive to Cr than the pearlshell, (3) elevated temperature or NO3 increased chronic Cr toxicity to fatmucket, and (4) acute WQC are protective of tested mussels with or without a co-stressor; however, the chronic WQC might not protect fatmucket at elevated temperature or NO3 and might not protect the amphipod at 20 °C with or without elevated Zn or NO3.


Assuntos
Anfípodes/fisiologia , Bivalves/fisiologia , Temperatura Alta , Nitratos/toxicidade , Estresse Fisiológico , Poluentes Químicos da Água/toxicidade , Zinco/toxicidade , Animais , Cromo , Testes de Toxicidade Crônica
12.
Environ Sci Technol ; 49(8): 5060-9, 2015 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-25860716

RESUMO

Runoff from coal-tar-based (CT) sealcoated pavement is a source of polycyclic aromatic hydrocarbons (PAHs) and N-heterocycles to surface waters. We investigated acute toxicity of simulated runoff collected from 5 h to 111 days after application of CT sealcoat and from 4 h to 36 days after application of asphalt-based sealcoat containing about 7% CT sealcoat (AS/CT-blend). Ceriodaphnia dubia (cladocerans) and Pimephales promelas (fathead minnows) were exposed in the laboratory to undiluted and 1:10 diluted runoff for 48 h, then transferred to control water and exposed to 4 h of ultraviolet radiation (UVR). Mortality following exposure to undiluted runoff from unsealed asphalt pavement and UVR was ≤10% in all treatments. Test organisms exposed to undiluted CT runoff samples collected during the 3 days (C. dubia) or 36 days (P. promelas) following sealcoat application experienced 100% mortality prior to UVR exposure; with UVR exposure, mortality was 100% for runoff collected across the entire sampling period. Phototoxic-equivalent PAH concentrations and mortality demonstrated an exposure-response relation. The results indicate that runoff remains acutely toxic for weeks to months after CT sealcoat application.


Assuntos
Cladocera/efeitos dos fármacos , Alcatrão/toxicidade , Cyprinidae/fisiologia , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Hidrocarbonetos Policíclicos Aromáticos/análise
13.
Environ Toxicol Chem ; 34(5): 1134-44, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25655578

RESUMO

The objective of the present study was to evaluate the relative sensitivity of test organisms in exposures to dilutions of a highly toxic sediment contaminated with metals and organic compounds. One dilution series was prepared using control sand (low total organic carbon [TOC; <0.1%, low binding capacity for contaminants]) and a second dilution series was prepared using control sediment from West Bearskin Lake, Minnesota, USA (high TOC [∼10% TOC, higher binding capacity for contaminants]). Test organisms included an amphipod (Hyalella azteca; 10-d and 28-d exposures), a midge (Chironomus dilutus; 20-d and 48-d exposures started with <1-h-old larvae, and 13-d and 48-d exposures started with 7-d-old larvae), and a unionid mussel (Lampsilis siliquoidea; 28-d exposures). Relative species sensitivity depended on the toxicity endpoint and the diluent. All 3 species were more sensitive in sand dilutions than in West Bearskin Lake sediment dilutions. The <1-h-old C. dilutus were more sensitive than 7-d-old C. dilutus, but replicate variability was high in exposures started with the younger midge larvae. Larval biomass and adult emergence endpoints of C. dilutus exhibited a similar sensitivity. Survival, weight, and biomass of H. azteca were more sensitive endpoints in 28-d exposures than in 10-d exposures. Weight and biomass of L. siliquoidea were sensitive endpoints in both sand and West Bearskin Lake sediment dilutions. Metals, ammonia, oil, and other organic contaminants may have contributed to the observed toxicity.


Assuntos
Anfípodes/efeitos dos fármacos , Bivalves/efeitos dos fármacos , Chironomidae/efeitos dos fármacos , Sedimentos Geológicos/química , Poluentes Químicos da Água/toxicidade , Animais , Biomassa , Exposição Ambiental , Lagos/química , Larva/efeitos dos fármacos , Larva/metabolismo , Metais/química , Metais/toxicidade , Testes de Toxicidade , Poluentes Químicos da Água/química
14.
Environ Toxicol Chem ; 33(10): 2246-58, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24862826

RESUMO

Chronic toxicity of cadmium, copper, lead, or zinc to white sturgeon (Acipenser transmontanus) and rainbow trout (Oncorhynchus mykiss) was evaluated in water-only exposures started with newly hatched larvae or approximately 1-mo-old juveniles. The 20% effect concentration (EC20) for cadmium from the sturgeon tests was higher than the EC20 from the trout tests, whereas the EC20 for copper, lead, or zinc for the sturgeon were lower than those EC20s for the trout. When the EC20s from the present study were included in compiled toxicity databases for all freshwater species, species mean chronic value for white sturgeon was in a relatively low percentile of the species sensitivity distribution for copper (9th percentile) and in the middle percentile for cadmium (55th percentile), zinc (40th percentile), or lead (50th percentile). However, the species mean chronic value for rainbow trout was in a high percentile for copper, lead, and zinc (∼68th-82nd percentile), but in a low percentile for cadmium (23rd percentile). The trout EC20s for each of the 4 metals and the sturgeon EC20s for cadmium or lead were above US Environmental Protection Agency chronic ambient water quality criteria (AWQC) or Washington State chronic water quality standards (WQS), whereas the sturgeon EC20s for copper or zinc were approximately equal to or below the chronic AWQC and WQS. In addition, acute 50% effect concentrations (EC50s) for copper obtained in the first 4 d of the chronic sturgeon test were below the final acute value used to derive acute AWQC and below acute WQS for copper.


Assuntos
Cádmio/toxicidade , Cobre/toxicidade , Peixes/fisiologia , Chumbo/toxicidade , Poluentes Químicos da Água/toxicidade , Zinco/toxicidade , Animais , Cádmio/análise , Cobre/análise , Água Doce/análise , Larva , Chumbo/análise , Oncorhynchus mykiss/fisiologia , Estados Unidos , Washington , Poluentes Químicos da Água/análise , Qualidade da Água , Zinco/análise
15.
Environ Toxicol Chem ; 32(12): 2826-35, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24243594

RESUMO

In previous laboratory chronic 7-d toxicity tests conducted with the cladoceran Ceriodaphnia dubia, surface waters collected from Appalachian sites impacted by coal mining have shown toxic effects associated with elevated total dissolved solids (TDS). The objective of the present study was to evaluate the effects of elevated major ions in chronic laboratory tests with C. dubia (7-d exposure), a unionid mussel (Lampsilis siliquoidea; 28-d exposure), an amphipod (Hyalella azteca; 28-d exposure), and a mayfly (Centroptilum triangulifer; 35-d exposure) in 3 reconstituted waters designed to be representative of 3 Appalachian sites impacted by coal mining. Two of the reconstituted waters had ionic compositions representative of alkaline mine drainage associated with mountaintop removal and valley fill-impacted streams (Winding Shoals and Boardtree, with elevated Mg, Ca, K, SO4, HCO3), and a third reconstituted water had an ionic composition representative of neutralized mine drainage (Upper Dempsey, with elevated Na, K, SO4, and HCO3). The waters with similar conductivities but, with different ionic compositions had different effects on the test organisms. The Winding Shoals and Boardtree reconstituted waters were consistently toxic to the mussel, the amphipod, and the mayfly. In contrast, the Upper Dempsey reconstituted water was toxic to the mussel, the amphipod, and the cladoceran but was not toxic to the mayfly. These results indicate that, although elevated TDS can be correlated with toxicity, the specific major ion composition of the water is important. Moreover, the choice of test organism is critical, particularly if a test species is to be used as a surrogate for a range of faunal groups.


Assuntos
Bicarbonatos/toxicidade , Cloretos/toxicidade , Metais Alcalinos/toxicidade , Metais Alcalinoterrosos/toxicidade , Rios , Sulfatos/toxicidade , Poluentes Químicos da Água/toxicidade , Anfípodes/efeitos dos fármacos , Animais , Região dos Apalaches , Cladocera/efeitos dos fármacos , Minas de Carvão , Insetos/efeitos dos fármacos , Íons , Testes de Toxicidade Crônica , Unionidae/efeitos dos fármacos
16.
Environ Toxicol Chem ; 32(11): 2495-506, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23657897

RESUMO

This study evaluated the chronic toxicity of Ni-spiked freshwater sediments to benthic invertebrates. A 2-step spiking procedure (spiking and sediment dilution) and a 2-stage equilibration period (10 wk anaerobic and 1 wk aerobic) were used to spike 8 freshwater sediments with wide ranges of acid-volatile sulfide (AVS; 0.94-38 µmol/g) and total organic carbon (TOC; 0.42-10%). Chronic sediment toxicity tests were conducted with 8 invertebrates (Hyalella azteca, Gammarus pseudolimnaeus, Chironomus riparius, Chironomus dilutus, Hexagenia sp., Lumbriculus variegatus, Tubifex tubifex, and Lampsilis siliquoidea) in 2 spiked sediments. Nickel toxicity thresholds estimated from species-sensitivity distributions were 97 µg/g and 752 µg/g (total recoverable Ni; dry wt basis) for sediments with low and high concentrations of AVS and TOC, respectively. Sensitive species were tested with 6 additional sediments. The 20% effect concentrations (EC20s) for Hyalella and Gammarus, but not Hexagenia, were consistent with US Environmental Protection Agency benchmarks based on Ni in porewater and in simultaneously extracted metals (SEM) normalized to AVS and TOC. For Hexagenia, sediment EC20s increased at less than an equimolar basis with increased AVS, and toxicity occurred in several sediments with Ni concentrations in SEM less than AVS. The authors hypothesize that circulation of oxygenated water by Hexagenia led to oxidation of AVS in burrows, creating microenvironments with high Ni exposure. Despite these unexpected results, a strong relationship between Hexagenia EC20s and AVS could provide a basis for conservative site-specific sediment quality guidelines for Ni.


Assuntos
Sedimentos Geológicos/análise , Invertebrados/efeitos dos fármacos , Níquel/toxicidade , Poluentes Químicos da Água/toxicidade , Anfípodes/efeitos dos fármacos , Animais , Bivalves/efeitos dos fármacos , Água Doce , Insetos/efeitos dos fármacos , Oligoquetos/efeitos dos fármacos , Especificidade da Espécie , Testes de Toxicidade Crônica , Estados Unidos
17.
Environ Toxicol Chem ; 32(1): 207-21, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23071077

RESUMO

Sediment toxicity tests were conducted to assess potential effects of contaminants associated with coal mining or natural gas extraction activities in the upper Tennessee River basin and eastern Cumberland River basin in the United States. Test species included two unionid mussels (rainbow mussel, Villosa iris, and wavy-rayed lampmussel, Lampsilis fasciola, 28-d exposures), and the commonly tested amphipod, Hyalella azteca (28-d exposure) and midge, Chironomus dilutus (10-d exposure). Sediments were collected from seven test sites with mussel communities classified as impacted and in proximity to coal mining or gas extraction activities, and from five reference sites with mussel communities classified as not impacted and no or limited coal mining or gas extraction activities. Additional samples were collected from six test sites potentially with high concentrations of polycyclic aromatic hydrocarbons (PAHs) and from a test site contaminated by a coal ash spill. Mean survival, length, or biomass of one or more test species was reduced in 10 of 14 test samples (71%) from impacted areas relative to the response of organisms in the five reference samples. A higher proportion of samples was classified as toxic to mussels (63% for rainbow mussels, 50% for wavy-rayed lampmussels) compared with amphipods (38%) or midge (38%). Concentrations of total recoverable metals and total PAHs in sediments did not exceed effects-based probable effect concentrations (PECs). However, the survival, length, or biomasses of the mussels were reduced significantly with increasing PEC quotients for metals and for total PAHs, or with increasing sum equilibrium-partitioning sediment benchmark toxic units for PAHs. The growth of the rainbow mussel also significantly decreased with increasing concentrations of a major anion (chloride) and major cations (calcium and magnesium) in sediment pore water. Results of the present study indicated that (1) the findings from laboratory tests were generally consistent with the field observations of impacts on mussel populations; (2) total recoverable metals, PAHs, or major ions, or all three in sediments might have contributed to the sediment toxicity; (3) the mussels were more sensitive to the contaminants in sediments than the commonly tested amphipod and midge; and (4) a sediment toxicity benchmark of 1.0 based on PECs may not be protective of mussels.


Assuntos
Minas de Carvão , Sedimentos Geológicos/química , Gás Natural , Poluentes Químicos da Água/toxicidade , Anfípodes/fisiologia , Animais , Chironomidae , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Tennessee , Testes de Toxicidade , Unionidae
18.
Arch Environ Contam Toxicol ; 64(1): 52-64, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23129064

RESUMO

Relationships between sediment toxicity and sediment chemistry were evaluated for 98 samples collected from seven metropolitan study areas across the United States. Sediment-toxicity tests were conducted with the amphipod Hyalella azteca (28 day exposures) and with the midge Chironomus dilutus (10 day exposures). Overall, 33 % of the samples were toxic to amphipods and 12 % of the samples were toxic to midge based on comparisons with reference conditions within each study area. Significant correlations were observed between toxicity end points and sediment concentrations of trace elements, polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), or organochlorine (OC) pesticides; however, these correlations were typically weak, and contaminant concentrations were usually below sediment-toxicity thresholds. Concentrations of the pyrethroid bifenthrin exceeded an estimated threshold of 0.49 ng/g (at 1 % total organic carbon) in 14 % of the samples. Of the samples that exceeded this bifenthrin toxicity threshold, 79 % were toxic to amphipods compared with 25 % toxicity for the samples below this threshold. Application of mean probable effect concentration quotients (PECQs) based on measures of groups of contaminants (trace elements, total PAHs, total PCBs, OC pesticides, and pyrethroid pesticides [bifenthrin in particular]) improved the correct classification of samples as toxic or not toxic to amphipods compared with measures of individual groups of contaminants.


Assuntos
Sedimentos Geológicos/química , Rios/química , Poluentes Químicos da Água/toxicidade , Anfípodes , Animais , Chironomidae , Cidades , Monitoramento Ambiental , Testes de Toxicidade , Estados Unidos , Poluentes Químicos da Água/análise , Poluição Química da Água/estatística & dados numéricos
19.
Environ Toxicol Chem ; 30(9): 2115-25, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21681812

RESUMO

Acute and chronic toxicity of copper (Cu) to a unionid mussel (Villosa iris) and a cladoceran (Ceriodaphnia dubia) were determined in water exposures at four concentrations of dissolved organic carbon (DOC; nominally 0.5, 2.5, 5, and 10 mg/L as carbon [C]). Test waters with DOC concentrations of 2.5 to 10 mg C/L were prepared by mixing a concentrate of natural organic matter (Suwannee River, GA, USA) in diluted well water (hardness 100 mg/L as CaCO(3) , pH 8.3, DOC 0.5 mg C/L). Acute median effect concentrations (EC50s) for dissolved Cu increased approximately fivefold (15-72 µg Cu/L) for mussel survival in 4-d exposures and increased about 11-fold (25-267 µg Cu/L) for cladoceran survival in 2-d exposures across DOC concentrations from 0.5 to 10 mg C/L. Similarly, chronic 20% effect concentrations (EC20s) for the mussel in 28-d exposures increased about fivefold (13-61 µg Cu/L for survival; 8.8-38 µg Cu/L for biomass), and the EC20s for the cladoceran in 7-d exposures increased approximately 17-fold (13-215 µg Cu/L) for survival or approximately fourfold (12-42 µg Cu/L) for reproduction across DOC concentrations from 0.5 to 10 mg C/L. The acute and chronic values for the mussel were less than or approximately equal to the values for the cladoceran. Predictions from the biotic ligand model (BLM) used to derive the U.S. Environmental Protection Agency's ambient water quality criteria (AWQC) for Cu explained more than 90% of the variation in the acute and chronic endpoints for the two species, with the exception of the EC20 for cladoceran reproduction (only 46% of variation explained). The BLM-normalized acute EC50s and chronic EC20s for the mussel and BLM-normalized chronic EC20s for the cladoceran in waters with DOC concentrations of 2.5 to 10 mg C/L were equal to or less than the final acute value and final chronic value in the BLM-based AWQC for Cu, respectively, indicating that the Cu AWQC might not adequately protect the mussel from acute and chronic exposure, and the cladoceran from chronic exposure.


Assuntos
Carbono/química , Cladocera/efeitos dos fármacos , Cobre/toxicidade , Unionidae/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Animais , Cobre/química , Relação Dose-Resposta a Droga , Feminino , Água Doce/química , Substâncias Húmicas , Ligantes , Masculino , Testes de Toxicidade Aguda , Testes de Toxicidade Crônica
20.
Environ Toxicol Chem ; 30(4): 981-7, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21305577

RESUMO

Silicon carbide nanowires (SiCNW) are insoluble in water. When released into an aquatic environment, SiCNW would likely accumulate in sediment. The objective of this study was to assess the toxicity of SiCNW to four freshwater sediment-dwelling organisms: amphipods (Hyalella azteca), midges (Chironomus dilutus), oligochaetes (Lumbriculus variegatus), and mussels (Lampsilis siliquoidea). Amphipods were exposed to either sonicated or nonsonicated SiCNW in water (1.0 g/L) for 48 h. Midges, mussels, and oligochaetes were exposed only to sonicated SiCNW in water for 96 h. In addition, amphipods were exposed to sonicated SiCNW in whole sediment for 10 d (44% SiCNW on dry wt basis). Mean 48-h survival of amphipods exposed to nonsonicated SiCNW in water was not significantly different from the control, whereas mean survival of amphipods exposed to sonicated SiCNW in two 48-h exposures (0 or 15% survival) was significantly different from the control (90 or 98% survival). In contrast, no effect of sonicated SiCNW was observed on survival of midges, mussels, or oligochaetes. Survival of amphipods was not significantly reduced in 10-d exposures to sonicated SiCNW either mixed in the sediment or layered on the sediment surface. However, significant reduction in amphipod biomass was observed with the SiCNW either mixed in sediment or layered on the sediment surface, and the reduction was more pronounced for SiCNW layered on the sediment. These results indicated that, under the experimental conditions, nonsonicated SiCNW in water were not acutely toxic to amphipods, sonicated SiCNW in water were acutely toxic to the amphipods, but not to other organisms tested, and sonicated SiCNW in sediment affected the growth but not the survival of amphipods.


Assuntos
Compostos Inorgânicos de Carbono/toxicidade , Invertebrados/efeitos dos fármacos , Nanofios/toxicidade , Compostos de Silício/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Organismos Aquáticos/efeitos dos fármacos , Sedimentos Geológicos/química , Nanofios/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...