Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Pediatr Allergy Immunol ; 35(5): e14143, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38745384

RESUMO

BACKGROUND: Childhood allergies of asthma and atopic dermatitis (AD) involve an overactive T-cell immune response triggered by allergens. However, the impact of T-cell receptor (TCR) repertoires on allergen sensitization and their role in mediating different phenotypes of asthma and AD in early childhood remains unclear. METHODS: A total of 78 children, comprising 26 with asthma alone, 26 with AD alone, and 26 healthy controls (HC), were enrolled. TCR repertoire profiles were determined using a unique molecular identifier system for next-generation sequencing. Integrative analyses of their associations with allergen-specific IgE levels and allergies were performed. RESULTS: The diversity in TCR alpha variable region (TRAV) genes of TCR repertoires and complementarity determining region 3 (CDR3) clonality in TRAV/TRBV (beta) genes were significantly higher in children with AD compared with those with asthma and HC (p < .05). Compared with HC, the expression of TRAV13-1 and TRAV4 genes was significantly higher in both asthma and AD (p < .05), with a significant positive correlation with mite-specific IgE levels (p < .01). In contrast, TRBV7-9 gene expression was significantly lower in both asthma and AD (p < .01), with this gene showing a significant negative correlation with mite-specific IgE levels (p < .01). Furthermore, significantly higher TRAV8-3 gene expression, positively correlated with food-specific IgE levels, was found in children with AD compared with those with asthma (p < .05). CONCLUSION: Integrated TCR repertoires analysis provides clinical insights into the diverse TCR genes linked to antigen specificity, offering potential for precision immunotherapy in childhood allergies.


Assuntos
Alérgenos , Asma , Dermatite Atópica , Imunoglobulina E , Humanos , Asma/imunologia , Asma/genética , Dermatite Atópica/imunologia , Dermatite Atópica/genética , Masculino , Feminino , Alérgenos/imunologia , Criança , Imunoglobulina E/sangue , Imunoglobulina E/imunologia , Pré-Escolar , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/imunologia , Regiões Determinantes de Complementaridade/genética , Regiões Determinantes de Complementaridade/imunologia , Estudos de Casos e Controles , Animais
2.
Vaccines (Basel) ; 12(4)2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38675792

RESUMO

Chitosan, a natural polysaccharide derived from chitin, possesses biocompatibility, biodegradability, and mucoadhesive characteristics, making it an attractive material for the delivery of mRNA payloads to the nasal mucosa and promoting their uptake by target cells such as epithelial and immune cells (e.g., dendritic cells and macrophages). In this project, we aimed at developing novel lipid-based nanoformulations for mRNA delivery to counteract the pandemic caused by SARS-CoV-2 virus. The formulations achieved a mRNA encapsulation efficiency of ~80.2% with chitosan-lipid nanoparticles, as measured by the RiboGreen assay. Furthermore, the evaluation of SARS-CoV-2 Spike (S) receptor-binding domain (RBD) expression via ELISA for our vaccine formulations showed transfection levels in human embryonic kidney cells (HEK 293), lung carcinoma cells (A549), and dendritic cells (DC 2.4) equal to 9.9 ± 0.1 ng/mL (174.7 ± 1.1 fold change from untreated cells (UT)), 7.0 ± 0.2 ng/mL (128.1 ± 4.9 fold change from UT), and 0.9 ± 0.0 ng/mL (18.0 ± 0.1 fold change from UT), respectively. Our most promising vaccine formulation was also demonstrated to be amenable to lyophilization with minimal degradation of loaded mRNA, paving the way towards a more accessible and stable vaccine. Preliminary in vivo studies in mice were performed to assess the systemic and local immune responses. Nasal bronchoalveolar lavage fluid (BALF) wash showed that utilizing the optimized formulation resulted in local antibody concentrations and did not trigger any systemic antibody response. However, if further improved and developed, it could potentially contribute to the management of COVID-19 through nasopharyngeal immunization strategies.

3.
World Allergy Organ J ; 17(4): 100890, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38585333

RESUMO

Background: There are few studies concerning the impact of serum vitamin D status on the risk of allergen sensitization and atopic dermatitis (AD) during early childhood. Method: Children with AD and age-matched healthy controls (HC) were prospectively enrolled at age 0.5, 2, and 4 years. Serum 25-hydroxyvitamin D (25[OH]D) level was measured using Elecsys Vitamin D Total assay. The study utilized the ImmunoCAP assay to analyze specific IgE for food and inhalant allergens, along with total serum IgE levels. It explored the connection between vitamin D levels and allergen sensitization, as well as their influence on AD at different ages. Results: A total of 222 children including 95 (59 AD and 36 HC), 66 (37 AD and 29 HC), and 61 (32 AD and 29 HC) children were classified at age 0.5, 2, and 4 years, respectively. In children with AD, there was a significantly lower vitamin D level at age 2 and 4, but a significantly higher prevalence of food and mite sensitization at all ages in comparison with HC (P < 0.001). Vitamin D level was found to be inversely related to the prevalence of allergen sensitization at age 4 (P < 0.05). However, vitamin D level appeared to have high importance for allergen sensitization at all ages and AD at age 2 and 4 years. Conclusion: Vitamin D deficiency is strongly associated with heightened prevalence of allergen sensitization, potentially increasing the susceptibility to AD in early childhood.

4.
J Vasc Access ; : 11297298231226155, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38326930

RESUMO

BACKGROUND: Arteriovenous fistula (AVF) stenosis is associated with pre-existing arterial atherosclerosis of AVF and results in significant morbidity and hospitalization for hemodialysis patients. The ankle brachial index (ABI) is a noninvasive method of assessing atherosclerosis. This study was to examine whether ABI is a significant predictor for AVF stenosis. METHODS: This was a retrospective, longitudinal cohort study. Patients with hemodialysis between 1 January 2016 and 31 December 2022 were reviewed. ABI was assessed in January 2016. AVF stenosis was diagnosed by fistulography. RESULTS: A total of 82 patients were included. Forty-two patients experienced AVF stenosis. The univariate logistic regression analysis showed that AVF stenosis was associated with age (OR: 1.045, p = 0.033), DM status (OR: 5.529, p = 0.013), 7-year averaged cholesterol level (OR: 1.018, p = 0.034), 7-year averaged triglyceride level (OR: 1.007, p = 0.017), and ABI (OR: 0.011, p < 0.001). In multivariate logistic regression analysis, ABI was a strong predictor for AVF stenosis (OR: 0.036, p = 0.023). Then, a cut-off point of ABI with optimal sensitivity and specificity for AVF stenosis was 1.01. An analysis of time to events with adjustment for other variables showed that patients with ABI < 1.01 were significantly associated with AVF stenosis (HR: 3.859, p < 0.001). CONCLUSIONS: ABI below 1.01 was associated with AVF stenosis. This finding may be useful in tailoring surveillance programs for monitoring AVF function.

5.
Genome Biol ; 24(1): 279, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38053173

RESUMO

BACKGROUND: Identifying host factors is key to understanding RNA virus pathogenicity. Besides proteins, RNAs can interact with virus genomes to impact replication. RESULTS: Here, we use proximity ligation sequencing to identify virus-host RNA interactions for four strains of Zika virus (ZIKV) and one strain of dengue virus (DENV-1) in human cells. We find hundreds of coding and non-coding RNAs that bind to DENV and ZIKV viruses. Host RNAs tend to bind to single-stranded regions along the virus genomes according to hybridization energetics. Compared to SARS-CoV-2 interactors, ZIKV-interacting host RNAs tend to be downregulated upon virus infection. Knockdown of several short non-coding RNAs, including miR19a-3p, and 7SK RNA results in a decrease in viral replication, suggesting that they act as virus-permissive factors. In addition, the 3'UTR of DYNLT1 mRNA acts as a virus-restrictive factor by binding to the conserved dumbbell region on DENV and ZIKV 3'UTR to decrease virus replication. We also identify a conserved set of host RNAs that interacts with DENV, ZIKV, and SARS-CoV-2, suggesting that these RNAs are broadly important for RNA virus infection. CONCLUSIONS: This study demonstrates that host RNAs can impact virus replication in permissive and restrictive ways, expanding our understanding of host factors and RNA-based gene regulation during viral pathogenesis.


Assuntos
Vírus da Dengue , Dengue , Infecção por Zika virus , Zika virus , Humanos , Zika virus/genética , Infecção por Zika virus/genética , RNA Viral/genética , Regiões 3' não Traduzidas , Vírus da Dengue/genética , Vírus da Dengue/metabolismo , Replicação Viral , Dengue/genética , Antivirais , Dineínas/genética , Dineínas/metabolismo
6.
Front Aging ; 4: 1175601, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37457922

RESUMO

Introduction: Implicated in both aging and Alzheimer's disease (AD), mammalian target of rapamycin (mTOR) is overactive in AD brain and lymphocytes. Stimulated by growth factors such as insulin, mTOR monitors cell health and nutrient needs. A small molecule oral drug candidate for AD, simufilam targets an altered conformation of the scaffolding protein filamin A (FLNA) found in AD brain and lymphocytes that induces aberrant FLNA interactions leading to AD neuropathology. Simufilam restores FLNA's normal shape to disrupt its AD-associated protein interactions. Methods: We measured mTOR and its response to insulin in lymphocytes of AD patients before and after oral simufilam compared to healthy control lymphocytes. Results: mTOR was overactive and its response to insulin reduced in lymphocytes from AD versus healthy control subjects, illustrating another aspect of insulin resistance in AD. After oral simufilam, lymphocytes showed normalized basal mTOR activity and improved insulin-evoked mTOR activation in mTOR complex 1, complex 2, and upstream and downstream signaling components (Akt, p70S6K and phosphorylated Rictor). Suggesting mechanism, we showed that FLNA interacts with the insulin receptor until dissociation by insulin, but this linkage was elevated and its dissociation impaired in AD lymphocytes. Simufilam improved the insulin-mediated dissociation. Additionally, FLNA's interaction with Phosphatase and Tensin Homolog deleted on Chromosome 10 (PTEN), a negative regulator of mTOR, was reduced in AD lymphocytes and improved by simufilam. Discussion: Reducing mTOR's basal overactivity and its resistance to insulin represents another mechanism of simufilam to counteract aging and AD pathology. Simufilam is currently in Phase 3 clinical trials for AD dementia.

7.
Int J Mol Sci ; 23(7)2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35409243

RESUMO

The mammary gland is a compound, branched tubuloalveolar structure and a major characteristic of mammals. The mammary gland has evolved from epidermal apocrine glands, the skin glands as an accessory reproductive organ to support postnatal survival of offspring by producing milk as a source of nutrition. The mammary gland development begins during embryogenesis as a rudimentary structure that grows into an elementary branched ductal tree and is embedded in one end of a larger mammary fat pad at birth. At the onset of ovarian function at puberty, the rudimentary ductal system undergoes dramatic morphogenetic change with ductal elongation and branching. During pregnancy, the alveolar differentiation and tertiary branching are completed, and during lactation, the mature milk-producing glands eventually develop. The early stages of mammary development are hormonal independent, whereas during puberty and pregnancy, mammary gland development is hormonal dependent. We highlight the current understanding of molecular regulators involved during different stages of mammary gland development.


Assuntos
Glândulas Mamárias Animais , Maturidade Sexual , Animais , Feminino , Lactação , Mamíferos , Morfogênese , Gravidez , Transdução de Sinais
8.
Cells ; 10(7)2021 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-34359890

RESUMO

The importance of transcriptional regulation of host genes in innate immunity against viral infection has been widely recognized. More recently, post-transcriptional regulatory mechanisms have gained appreciation as an additional and important layer of regulation to fine-tune host immune responses. Here, we review the functional significance of alternative splicing in innate immune responses to viral infection. We describe how several central components of the Type I and III interferon pathways encode spliced isoforms to regulate IFN activation and function. Additionally, the functional roles of splicing factors and modulators in antiviral immunity are discussed. Lastly, we discuss how cell death pathways are regulated by alternative splicing as well as the potential role of this regulation on host immunity and viral infection. Altogether, these studies highlight the importance of RNA splicing in regulating host-virus interactions and suggest a role in downregulating antiviral innate immunity; this may be critical to prevent pathological inflammation.


Assuntos
Processamento Alternativo/genética , Interações Hospedeiro-Patógeno/genética , Viroses/genética , Animais , Morte Celular , Interações Hospedeiro-Patógeno/imunologia , Humanos , Imunidade Inata , Modelos Biológicos , Viroses/imunologia , Viroses/patologia
9.
Nucleic Acids Res ; 49(17): 10034-10045, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34428287

RESUMO

Quaking (QKI) controls RNA metabolism in many biological processes including innate immunity, where its roles remain incompletely understood. To illuminate these roles, we performed genome scale transcriptome profiling in QKI knockout cells with or without poly(I:C) transfection, a double-stranded RNA analog that mimics viral infection. Analysis of RNA-sequencing data shows that QKI knockout upregulates genes induced by interferons, suggesting that QKI is an immune suppressor. Furthermore, differential splicing analysis shows that QKI primarily controls cassette exons, and among these events, we noted that QKI silences splicing of the extra domain A (EDA) exon in fibronectin (FN1) transcripts. QKI knockout results in elevated production and secretion of FN1-EDA protein, which is a known activator of interferons. Consistent with an upregulation of the interferon response in QKI knockout cells, our results show reduced production of dengue virus-2 and Japanese encephalitis virus in these cells. In conclusion, we demonstrate that QKI downregulates the interferon system and attenuates the antiviral state.


Assuntos
Vírus da Dengue/crescimento & desenvolvimento , Vírus da Encefalite Japonesa (Espécie)/crescimento & desenvolvimento , Fibronectinas/genética , Interferon Tipo I/imunologia , Splicing de RNA/genética , Proteínas de Ligação a RNA/metabolismo , Células A549 , Linhagem Celular Tumoral , Vírus da Dengue/imunologia , Vírus da Encefalite Japonesa (Espécie)/imunologia , Perfilação da Expressão Gênica , Humanos , Imunidade Inata/genética , Imunidade Inata/imunologia , Interferon Tipo I/genética , Poli I-C/imunologia , Interferência de RNA , RNA Interferente Pequeno/genética , Proteínas de Ligação a RNA/genética , Transcriptoma/genética , Regulação para Cima/genética
10.
Am J Transl Res ; 12(7): 4074-4083, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32774761

RESUMO

Stressed or injured cells release ATP into the extracellular milieu via the pannexin1 (Panx1) channels, which is the basis of inflammation in a variety of conditions, including allergic lung inflammation. Although the role of Panx1 in mediating inflammation has been well established, the role of its mimetic peptide, 10Panx1, which inhibits ATP release from Panx1 channels, in allergic asthma remains understudied. The aim of this study was to evaluate the effects of using 10Panx1 to inhibit Panx1 channel in a murine model of ovalbumin (OVA)-induced asthma. We demonstrate that blockade of Panx1 significantly attenuated goblet cell hyperplasia and inflammatory cell infiltration into the lungs of OVA-sensitized mice. Inhibition of Panx1 also reduced the total and eosinophil cell numbers in the bronchoalveolar lavage fluid (BALF) and reduced expression of CCL11 and CCL2 in lung tissues from mice. Moreover, we detected lower levels of IL-5 and IL-13 in the culture supernatant of OVA-restimulated splenocytes from 10Panx1-treated mice. Collectively, our findings suggest that Panx1 inhibition of allergen-mediated lung inflammation has the potential to suppress allergic responses in asthma.

11.
Part Fibre Toxicol ; 17(1): 37, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32753046

RESUMO

BACKGROUND: Pneumococcus is one of the most common human airway pathogens that causes life-threatening infections. Ambient fine particulate matter (PM) with aerodynamic diameter ≤ 2.5 µm (PM2.5) is known to significantly contribute to respiratory diseases. PM2.5-induced airway inflammation may decrease innate immune defenses against bacterial infection. However, there is currently limited information available regarding the effect of PM2.5 exposure on molecular interactions between pneumococcus and macrophages. RESULTS: PM2.5 exposure hampered macrophage functions, including phagocytosis and proinflammatory cytokine production, in response to pneumococcal infection. In a PM2.5-exposed pneumococcus-infected mouse model, PM2.5 subverted the pulmonary immune response and caused leukocyte infiltration. Further, PM2.5 exposure suppressed the levels of CXCL10 and its receptor, CXCR3, by inhibiting the PI3K/Akt and MAPK pathways. CONCLUSIONS: The effect of PM2.5 exposure on macrophage activity enhances pneumococcal infectivity and aggravates pulmonary pathogenesis.


Assuntos
Poluentes Atmosféricos/toxicidade , Pulmão/efeitos dos fármacos , Material Particulado/toxicidade , Animais , Humanos , Inflamação , Pulmão/microbiologia , Ativação de Macrófagos , Macrófagos , Tamanho da Partícula , Fagocitose , Fosfatidilinositol 3-Quinases , Streptococcus pneumoniae
12.
Mol Genet Genomic Med ; 8(10): e1455, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32794656

RESUMO

BACKGROUND: Exome sequencing has recently become more readily available, and more information about incidental findings has been disclosed. However, data from East Asia are scarce. We studied the application of exome sequencing to the identification of pathogenic/likely pathogenic variants in the ACMG 59 gene list and the frequency of these variants in the Taiwanese population. METHODS: This study screened 161 Taiwanese exomes for variants from the ACMG 59 gene list. The identified variants were reviewed based on information from different databases and the available literature and classified according to the ACMG standard guidelines. RESULTS: We identified seven pathogenic/likely pathogenic variants in eight individuals, with five participants with autosomal recessive variants in one allele and three participants with autosomal dominant variants. Approximately 1.86% (3/161) of the Taiwanese individuals had a reportable pathogenic/likely pathogenic variant as determined by whole-exome sequencing (WES), which was comparable to the proportions published previously in other countries. We further investigated the high carrier rate of rare variants in the ATP7B gene, which might indicate a founder effect in our population. CONCLUSION: This study was the first to provide Taiwanese population data of incidental findings and emphasized a high carrier rate of candidate pathogenic/likely pathogenic variants in the ATP7B gene.


Assuntos
Sequenciamento do Exoma/estatística & dados numéricos , Frequência do Gene , População/genética , ATPases Transportadoras de Cobre/genética , Humanos , Mutação , Taiwan
13.
Biochem Pharmacol ; 176: 113814, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31954716

RESUMO

Brain tumors, particularly high-grade glioblastomas, are a crucial public health issue due to poor prognosis and an extremely low survival rate. The glioblastoma multiforme (GBM) grows rapidly within its unique microenvironment that is characterized by active neural communications. Therefore, diverse neurotransmitters not only maintain normal brain functions but also influence glioma progression. To fully appreciate the relationship between neurotransmitters and glioma progression, we reviewed potential neurotransmitter contributors in human GBM and the much less aggressive Low-grade glioma (LGG) by combining previously published data from gene-mutation/mRNA sequencing databases together with protein-protein interaction (PPI) network analysis results. The summarized results indicate that glutamatergic and calcium signaling may provide positive feedback to promote glioma formation through 1) metabolic reprogramming and genetic switching to accelerate glioma duplication and progression; 2) upregulation of cytoskeleton proteins and elevation of intracellular Ca2+ levels to increase glutamate release and facilitate formation of synaptic-like connections with surrounding cells in their microenvironment. The upregulated glutamatergic neuronal activities in turn stimulate glioma growth and signaling. Importantly, the enhanced electrical and molecular signals from both neurons and glia propagate out to enable glioma symptoms such as epilepsy and migraine. The elevated intracellular Ca2+ also activates nitric oxide synthase to produce nitric oxide (NO) that can either promote or inhibit tumorigenesis. By analyzing the network effects for complex interaction among neurotransmitters such as glutamate, Ca2+ and NO in brain tumor progression, especially GBM, we identified the glutamatergic signaling as the potential therapeutic targets and suggest manipulation of glutamatergic signaling may be an effective treatment strategy for this aggressive brain cancer.


Assuntos
Neoplasias Encefálicas/metabolismo , Cálcio/metabolismo , Glioblastoma/metabolismo , Ácido Glutâmico/metabolismo , Transdução de Sinais , Animais , Neoplasias Encefálicas/patologia , Progressão da Doença , Glioblastoma/patologia , Humanos , Neurônios/metabolismo , Neurônios/patologia , Óxido Nítrico/metabolismo
14.
Mol Psychiatry ; 25(4): 750-760, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-30214040

RESUMO

Multiple lines of evidence point to glutamatergic signaling in the postsynaptic density (PSD) as a pathophysiologic mechanism in schizophrenia. Integral to PSD glutamatergic signaling is reciprocal interplay between GluN and mGluR5 signaling. We examined agonist-induced mGluR5 signaling in the postmortem dorsolateral prefrontal cortex (DLPFC) derived from 17 patients and age-matched and sex-matched controls. The patient group showed a striking reduction in mGluR5 signaling, manifested by decreases in Gq/11 coupling and association with PI3K and Homer compared to controls (p < 0.01 for all). This was accompanied by increases in serine and tyrosine phosphorylation of mGluR5, which can decrease mGluR5 activity via desensitization (p < 0.01). In addition, we find altered protein-protein interaction (PPI) of mGluR5 with RGS4, norbin, Preso 1 and tamalin, which can also attenuate mGluR5 activity. We previously reported molecular underpinnings of GluN hypofunction (decreased GluN2 phosphorylation) and here we show those of reduced mGluR5 signaling in schizophrenia. We find that reduced GluN2 phosphorylation can be precipitated by attenuated mGluR5 activity and that increased mGluR5 phosphorylation can result from decreased GluN function, suggesting a reciprocal interplay between the two pathways in schizophrenia. Interestingly, the patient group showed decreased mGluR5-GluN association (p < 0.01), a mechanistic basis for the reciprocal facilitation. In sum, we present the first direct evidence for mGluR5 hypoactivity, propose a reciprocal interplay between GluN and mGluR5 pathways as integral to glutamatergic dysregulation and suggest protein-protein interactions in mGluR5-GluN complexes as potential targets for intervention in schizophrenia.


Assuntos
Receptor de Glutamato Metabotrópico 5/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Esquizofrenia/metabolismo , Idoso , Idoso de 80 Anos ou mais , Antipsicóticos/uso terapêutico , Encéfalo/metabolismo , Fármacos Atuantes sobre Aminoácidos Excitatórios/metabolismo , Feminino , Humanos , Masculino , Proteínas de Membrana/metabolismo , Fosforilação , Densidade Pós-Sináptica/metabolismo , Córtex Pré-Frontal/metabolismo , Receptor de Glutamato Metabotrópico 5/fisiologia , Transdução de Sinais/efeitos dos fármacos
15.
RNA Biol ; 17(3): 366-380, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31829086

RESUMO

Quaking (QKI) is an RNA-binding protein (RBP) involved in multiple aspects of RNA metabolism and many biological processes. Despite a known immune function in regulating monocyte differentiation and inflammatory responses, the degree to which QKI regulates the host interferon (IFN) response remains poorly characterized. Here we show that QKI ablation enhances poly(I:C) and viral infection-induced IFNß transcription. Characterization of IFN-related signalling cascades reveals that QKI knockout results in higher levels of IRF3 phosphorylation. Interestingly, complementation with QKI-5 isoform alone is sufficient to rescue this phenotype and reduce IRF3 phosphorylation. Further analysis shows that MAVS, but not RIG-I or MDA5, is robustly upregulated in the absence of QKI, suggesting that QKI downregulates MAVS and thus represses the host IFN response. As expected, MAVS depletion reduces IFNß activation and knockout of MAVS in the QKI knockout cells completely abolishes IFNß induction. Consistently, ectopic expression of RIG-I activates stronger IFNß induction via MAVS-IRF3 pathway in the absence of QKI. Collectively, these findings demonstrate a novel role for QKI in negatively regulating host IFN response by reducing MAVS levels.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Interações Hospedeiro-Patógeno/fisiologia , Interferon Tipo I/metabolismo , Proteínas de Ligação a RNA/metabolismo , Células A549 , Proteínas Adaptadoras de Transdução de Sinal/genética , Sistemas CRISPR-Cas , Regulação da Expressão Gênica , Humanos , Fator Regulador 3 de Interferon/genética , Fator Regulador 3 de Interferon/metabolismo , Interferon Tipo I/genética , Fosforilação , Poli I-C/genética , Poli I-C/metabolismo , Proteínas de Ligação a RNA/genética , Infecções por Respirovirus/metabolismo , Vírus Sendai/patogenicidade
16.
Neurobiol Aging ; 84: 119-130, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31539648

RESUMO

Aberrant insulin and adipokine signaling has been implicated in cognitive decline associated with both type 2 diabetes mellitus and neurodegenerative diseases. We established methods that reliably measure insulin, adiponectin and leptin signaling, and their crosstalk, in thawed postmortem mid-frontal cortical tissue from cognitively normal older subjects with a short postmortem interval. Insulin-evoked insulin receptor (IR) activation increases activated, tyrosine-phosphorylated IRß on tyrosine residues 960, 1150, and 1151, insulin receptor substrate-1 recruitment to IRß and phosphorylated RAC-α-serine/threonine-protein kinase. Adiponectin augments, but leptin inhibits, insulin signaling. Adiponectin activates adiponectin receptors to induce APPL1 binding to adiponectin receptor 1 and 2 and T-cadherin and downstream adenosine monophosphate-dependent protein kinase phosphorylation. Insulin inhibited adiponectin-induced signaling. In addition, leptin-induced leptin receptor (OB-R) signaling promotes Janus kinase 2 recruitment to OB-R and Janus kinase 2 and downstream signal transducer and activator of transcription 3 phosphorylation. Insulin enhanced leptin signaling. These data demonstrate insulin and adipokine signaling interactions in human brain. Future studies can use these methods to examine insulin, adiponectin, and leptin metabolic dysregulation in aging and disease states, such as type 2 diabetes and Alzheimer's disease-related dementias.


Assuntos
Adipocinas/metabolismo , Encéfalo/patologia , Insulina/metabolismo , Transdução de Sinais , Envelhecimento/metabolismo , Encéfalo/metabolismo , Humanos , Leptina/metabolismo , Mudanças Depois da Morte
17.
Arch Biochem Biophys ; 670: 104-115, 2019 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-30641048

RESUMO

The NLRP proteins are a subfamily of the NOD-like receptor (NLR) innate immune sensors that possess an ATP-binding NACHT domain. As the most well studied member, NLRP3 can initiate the assembly process of a multiprotein complex, termed the inflammasome, upon detection of a wide range of microbial products and endogenous danger signals and results in the activation of pro-caspase-1, a cysteine protease that regulates multiple host defense pathways including cytokine maturation. Dysregulated NLRP3 activation contributes to inflammation and the pathogenesis of several chronic diseases, and the ATP-binding properties of NLRPs are thought to be critical for inflammasome activation. In light of this, we examined the utility of immobilized ATP matrices in the study of NLRP inflammasomes. Using NLRP3 as the prototypical member of the family, P-linked ATP Sepharose was determined to be a highly-effective capture agent. In subsequent examinations, P-linked ATP Sepharose was used as an enrichment tool to enable the effective profiling of NLRP3-biomarker signatures with selected reaction monitoring-mass spectrometry (SRM-MS). Finally, ATP Sepharose was used in combination with a fluorescence-linked enzyme chemoproteomic strategy (FLECS) screen to identify potential competitive inhibitors of NLRP3. The identification of a novel benzo[d]imidazol-2-one inhibitor that specifically targets the ATP-binding and hydrolysis properties of the NLRP3 protein implies that ATP Sepharose and FLECS could be applied other NLRPs as well.


Assuntos
Trifosfato de Adenosina/metabolismo , Inflamassomos/metabolismo , Proteínas NLR/metabolismo , Células HEK293 , Humanos , Fosforilação , Processamento de Proteína Pós-Traducional , Ubiquitinação
18.
J Microbiol Immunol Infect ; 52(3): 471-479, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28939136

RESUMO

BACKGROUND/PURPOSE: The diagnosis of exercise-induced bronchoconstriction (EIB) was established by changes in lung function after exercise challenge. The prevalence of EIB and factors related to EIB were not fully described in children with asthma. The aim of this study was to investigate the prevalence and predictors of EIB in children with asthma. METHODS: A total of 149 children with physician-diagnosed asthma above 5 years of age underwent standardized treadmill exercise challenge for EIB and methacholine challenge for airway hyper-responsiveness from October 2015 to December 2016. RESULTS: EIB presented in 52.5% of children with asthma. Compared with children without EIB, there were more patients with atopic dermatitis in children with EIB (p = 0.038). Allergic to Dermatohagoides pteronyssinus and Dermatophagoides farinae were also found more in children with EIB (p = 0.045 and 0.048 respectively). Maximal decrease in forced expiratory volume in 1 s (FEV1) were highest in patients who were most sensitive to methacholine provocation (provocation concentration causing 20% fall in FEV1 [PC20] ≤ 1 mg/mL). Patients, who were more sensitive to methacholine challenge (with lower PC20 levels), develop EIB with more decline in FEV1 after exercise challenge (p = 0.038). Among patients with EIB, airflow limitation development in patient with methacholine-induced airway hyper-responsiveness was more abrupt and severe compared with patients without airway hyper-responsiveness (p = 0.045 and 0.033 respectively). CONCLUSION: EIB presented in 52.5% of children with asthma. The more severe methacholine-induced hyper-responsiveness, the higher prevalence of EIB as well as the severity.


Assuntos
Asma Induzida por Exercício/epidemiologia , Asma Induzida por Exercício/fisiopatologia , Broncoconstrição/fisiologia , Animais , Asma/epidemiologia , Asma/fisiopatologia , Testes de Provocação Brônquica , Criança , Pré-Escolar , Estudos de Coortes , Estudos Transversais , Teste de Esforço , Feminino , Volume Expiratório Forçado , Humanos , Hipersensibilidade/epidemiologia , Hipersensibilidade/fisiopatologia , Masculino , Taiwan/epidemiologia
19.
Crit Rev Oncog ; 24(3): 243-250, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32422022

RESUMO

Glioblastoma multiforme (GBM) is the most common and malignant glial tumor. Although pro-growth, pro-survival, and pro-metastasis insulin signaling has been proposed to be a prominent driver of GBM progression, the insulin receptor (IR) signaling cascade in GBM has not been fully elucidated. Upon binding of the insulin and insulin-like growth factor-1 (IGF-1), IR is activated by increasing the levels of tyrosine-phosphorylated (pY) IRP on tyrosine 960, 1150, and 1151 residues as well as IRS-1 recruitment to IRß. This leads to activation of the downstream PI3K/AKT/GSK3 or mTORC1/ERK, many of which are implicated in tumorigenesis including breast and liver carcinomas. Here, we directly compare insulin signaling in U87 MG human glioblastoma to primary human astrocytes by assessing the levels of activated IRß, IRS-1 recruitment to IRß, as well as downstream activated mitogenic ERK2 and pro-survival AKT1 under nonstimulated conditions and induced by 1 nM insulin. Our results show insulin receptor and its downstream signaling molecules are robustly hyperactivated. This mechanism renders a reduced insulin-induced response. Our findings provide a mechanism through which GBM develops and grows aggressively even without insulin.


Assuntos
Antígenos CD/metabolismo , Glioblastoma/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Insulina/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor de Insulina/metabolismo , Linhagem Celular Tumoral , Glioblastoma/patologia , Humanos , Transdução de Sinais/fisiologia
20.
Chem Rev ; 118(8): 4448-4482, 2018 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-29652486

RESUMO

Flaviviruses, such as dengue, Japanese encephalitis, tick-borne encephalitis, West Nile, yellow fever, and Zika viruses, are critically important human pathogens that sicken a staggeringly high number of humans every year. Most of these pathogens are transmitted by mosquitos, and not surprisingly, as the earth warms and human populations grow and move, their geographic reach is increasing. Flaviviruses are simple RNA-protein machines that carry out protein synthesis, genome replication, and virion packaging in close association with cellular lipid membranes. In this review, we examine the molecular biology of flaviviruses touching on the structure and function of viral components and how these interact with host factors. The latter are functionally divided into pro-viral and antiviral factors, both of which, not surprisingly, include many RNA binding proteins. In the interface between the virus and the hosts we highlight the role of a noncoding RNA produced by flaviviruses to impair antiviral host immune responses. Throughout the review, we highlight areas of intense investigation, or a need for it, and potential targets and tools to consider in the important battle against pathogenic flaviviruses.


Assuntos
Flavivirus/fisiologia , Flavivirus/classificação , Flavivirus/genética , Flavivirus/metabolismo , Genes Virais , Interações Hospedeiro-Patógeno , Humanos , Proteínas de Ligação a RNA/metabolismo , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...