Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Ecol Evol ; 7(1): 143-154, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36593292

RESUMO

Species interactions drive evolution while evolution shapes these interactions. The resulting eco-evolutionary dynamics and their repeatability depend on how adaptive mutations available to community members affect fitness and ecologically relevant traits. However, the diversity of adaptive mutations is not well characterized, and we do not know how this diversity is affected by the ecological milieu. Here we use barcode lineage tracking to address this question in a community of yeast Saccharomyces cerevisiae and alga Chlamydomonas reinhardtii that have a net commensal relationship that results from a balance between competitive and mutualistic interactions. We find that yeast has access to many adaptive mutations with diverse ecological consequences, in particular those that increase and reduce the yields of both species. The presence of the alga does not change which mutations are adaptive in yeast (that is, there is no fitness trade-off for yeast between growing alone or with alga), but rather shifts selection to favour yeast mutants that increase the yields of both species and make the mutualism stronger. Thus, in the presence of the alga, adaptative mutations contending for fixation in yeast are more likely to enhance the mutualism, even though cooperativity is not directly favoured by natural selection in our system. Our results demonstrate that ecological interactions not only alter the trajectory of evolution but also dictate its repeatability; in particular, weak mutualisms can repeatably evolve to become stronger.


Assuntos
Evolução Biológica , Chlamydomonas reinhardtii , Microbiota , Saccharomyces cerevisiae , Simbiose , Microbiota/genética , Microbiota/fisiologia , Mutação , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiologia , Simbiose/genética , Simbiose/fisiologia , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/fisiologia
2.
JACC Clin Electrophysiol ; 2(6): 667-678, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29759744

RESUMO

OBJECTIVES: This prospective study compared the efficacy of atrial substrate modification guided by a nonlinear phase mapping technique with that of conventional substrate ablation. BACKGROUND: The optimal ablation strategy for persistent atrial fibrillation (AF) was unknown. METHODS: In phase 1 study, we applied a cellular automation technique to simulate the electrical wave propagation to improve the phase mapping algorithm, involving analysis of high-similarity electrogram regions. In addition, we defined rotors and focal AF sources, using the physical parameters of the divergence and curvature forces. In phase 2 study, we enrolled 68 patients with persistent AF undergoing substrate modification into 2 groups, group-1 (n = 34) underwent similarity index (SI) and phase mapping techniques; group-2 (n = 34) received complex fractionated atrial electrogram ablation with commercially available software. Group-1 received real-time waveform similarity measurements in which a phase mapping algorithm was applied to localize the sources. We evaluated the single-procedure freedom from AF. RESULTS: In group-1, we identified an average of 2.6 ± 0.89 SI regions per chamber. These regions involved rotors and focal sources in 65% and 77% of patients in group-1, respectively. Group-1 patients had shorter ablation procedure times, higher termination rates, and significant reduction in AF recurrence compared to group-2 and a trend toward benefit for all atrial arrhythmias. Multivariate analysis showed that substrate mapping using nonlinear similarity and phase mapping was the independent predictor of freedom from AF recurrence (hazard ratio: 0.26; 95% confidence interval: 0.09 to 0.74; p = 0.01). CONCLUSIONS: Our study showed that for persistent AF ablation, a specified substrate modification guided by nonlinear phase mapping could eliminate localized re-entry and non-pulmonary focal sources after pulmonary vein isolation.

3.
Artigo em Inglês | MEDLINE | ID: mdl-26764785

RESUMO

We investigate synchronization and plateau splitting of coupled oscillators on a one-dimensional lattice with long-range interactions that decay over distance as a power law. We show that in the thermodynamic limit the dynamics of systems of coupled oscillators with power-law exponent α≤1 is identical to that of the all-to-all coupling case. For α>1, oscillatory behavior of the phase coherence appears as a result of single plateau splitting into multiple plateaus. A coarse-graining method is used to investigate the onset of plateau splitting. We analyze a simple oscillatory state formed by two plateaus in detail and propose a systematic approach to predict the onset of plateau splitting. The prediction of breaking points of plateau splitting is in quantitatively good agreement with numerical simulations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...