Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 629(8010): 114-120, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38538797

RESUMO

Mountain ranges contain high concentrations of endemic species and are indispensable refugia for lowland species that are facing anthropogenic climate change1,2. Forecasting biodiversity redistribution hinges on assessing whether species can track shifting isotherms as the climate warms3,4. However, a global analysis of the velocities of isotherm shifts along elevation gradients is hindered by the scarcity of weather stations in mountainous regions5. Here we address this issue by mapping the lapse rate of temperature (LRT) across mountain regions globally, both by using satellite data (SLRT) and by using the laws of thermodynamics to account for water vapour6 (that is, the moist adiabatic lapse rate (MALRT)). By dividing the rate of surface warming from 1971 to 2020 by either the SLRT or the MALRT, we provide maps of vertical isotherm shift velocities. We identify 17 mountain regions with exceptionally high vertical isotherm shift velocities (greater than 11.67 m per year for the SLRT; greater than 8.25 m per year for the MALRT), predominantly in dry areas but also in wet regions with shallow lapse rates; for example, northern Sumatra, the Brazilian highlands and southern Africa. By linking these velocities to the velocities of species range shifts, we report instances of close tracking in mountains with lower climate velocities. However, many species lag behind, suggesting that range shift dynamics would persist even if we managed to curb climate-change trajectories. Our findings are key for devising global conservation strategies, particularly in the 17 high-velocity mountain regions that we have identified.


Assuntos
Altitude , Migração Animal , Biodiversidade , Mapeamento Geográfico , Aquecimento Global , Animais , África Austral , Brasil , Conservação dos Recursos Naturais , Aquecimento Global/estatística & dados numéricos , Umidade , Indonésia , Chuva , Refúgio de Vida Selvagem , Imagens de Satélites , Especificidade da Espécie , Temperatura , Fatores de Tempo
2.
Front Neurosci ; 12: 187, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29615863

RESUMO

The A2A adenosine receptor (A2AR) and D2 dopamine receptor (D2R) are two G-protein-coupled receptors that can form dimers and negatively regulate their partners. TAR DNA-binding protein (TDP-43) is a nuclear protein that has been implicated in amyotrophic lateral sclerosis (ALS). Mislocalization of TDP-43 from the nucleus to the cytoplasm is an early step of TDP-43 proteinopathy. Our previous studies indicated that A2AR is a potential drug target for ALS because treatment with an A2AR agonist (JMF1907; a T1-11 analog) prevents reactive oxygen species (ROS)-induced TDP-43 mislocalization in a motor neuron cell line (NSC34) and delays motor impairment in a TDP-43 transgenic ALS mouse model. Here, we set out to assess whether activation of D2R interferes with the beneficial effects of an A2AR agonist on motor neurons. We first demonstrated that A2AR and D2R are both located in motor neurons of mouse and human spinal cords and human iPSC-derived motor neurons. Expression of A2AR and D2R in NSC34 cells led to dimer formation without affecting the binding affinity of A2AR toward T1-11. Importantly, activation of D2R reduced T1-11-mediated activation of cAMP/PKA signaling and subsequent inhibition of TDP-43 mislocalization in NSC34 cells. Treatment with quinpirole (a D2 agonist) blunted the rescuing effect of T1-11 on TDP-43 mislocalization and impaired grip strength in a mouse model of ALS. Our findings suggest that D2R activation may limit the beneficial responses of an A2AR agonist in motor neurons and may have an important role in ALS pathogenesis.

3.
ISME J ; 6(12): 2280-90, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22739492

RESUMO

Terrestrial mud volcanism represents the prominent surface geological feature, where fluids and hydrocarbons are discharged along deeply rooted structures in tectonically active regimes. Terrestrial mud volcanoes (MVs) directly emit the major gas phase, methane, into the atmosphere, making them important sources of greenhouse gases over geological time. Quantification of methane emission would require detailed insights into the capacity and efficiency of microbial metabolisms either consuming or producing methane in the subsurface, and establishment of the linkage between these methane-related metabolisms and other microbial or abiotic processes. Here we conducted geochemical, microbiological and genetic analyses of sediments, gases, and pore and surface fluids to characterize fluid processes, community assemblages, functions and activities in a methane-emitting MV of southwestern Taiwan. Multiple lines of evidence suggest that aerobic/anaerobic methane oxidation, sulfate reduction and methanogenesis are active and compartmentalized into discrete, stratified niches, resembling those in marine settings. Surface evaporation and oxidation of sulfide minerals are required to account for the enhanced levels of sulfate that fuels subsurface sulfate reduction and anaerobic methanotrophy. Methane flux generated by in situ methanogenesis appears to alter the isotopic compositions and abundances of thermogenic methane migrating from deep sources, and to exceed the capacity of microbial consumption. This metabolic stratification is sustained by chemical disequilibria induced by the mixing between upward, anoxic, methane-rich fluids and downward, oxic, sulfate-rich fluids.


Assuntos
Bactérias/classificação , Bactérias/metabolismo , Sedimentos Geológicos/microbiologia , Metano/metabolismo , Bactérias/genética , DNA Bacteriano/genética , Sedimentos Geológicos/química , Geologia , Hidrocarbonetos/metabolismo , Metagenoma , Oxirredução , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Sulfatos/metabolismo , Taiwan
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...