Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
1.
Cell Dev Biol ; 6(2)2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28819582

RESUMO

Despite numerous reports on immune checkpoint inhibitor for the treatment of non-small cell lung cancer (NSCLC), the response rate remains low but durable. Thus cisplatin still plays a major role in the treatment of NSCLC. While there are many mechanisms involved in cisplatin resistance, alteration in metabolic phenotypes with elevated levels of reactive oxygen species (ROS) are found in several cisplatin resistant tumors. These resistant cells become more reliant on mitochondria oxidative metabolism instead of glucose. Consequently, high ROS and metabolic alteration contributed to epithelial-mesenchymal transition (EMT). Importantly, recent findings indicated that EMT has a crucial role in upregulating PD-L1 expression in cancer cells. Thus, it is very likely that cisplatin resistance will lead to high expression of PD-L1/PD-1 which makes them vulnerable to anti PD-1 or anti PD-L1 antibody treatment. An understanding of the interactions between cancer cells metabolic reprogramming and immune checkpoints is critical for combining metabolism targeted therapies with immunotherapies.

2.
Oncogene ; 35(13): 1632-42, 2016 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-26096933

RESUMO

Many human malignancies lack de novo biosynthesis of arginine (Arg) as the key enzyme argininosuccinate synthetase 1 (ASS1) is silenced. These tumors acquire ectopic Arg for survival, and depleting this source by Arg-depleting recombinant enzyme ADI-PEG20 results in cell death. Mechanisms underlying Arg auxotrophy in these tumors and how they respond to Arg-auxotrophic stress are poorly understood. Here, we report that an immediate-early event of Arg-auxotrophic response involves reactive oxygen species-mediated secretion of Gas6, which interacts with its receptor Axl and activates the downstream Ras/PI3K/Akt growth signal leading to accumulation of c-Myc by protein stabilization. Arg-auxotrophic challenge also transcriptionally upregulates c-Myc expression, which provides a feedback mechanism to enhance Axl expression. c-Myc is a positive regulator of ASS1, but elevated ASS1 provides a feedback mechanism to suppress c-Myc and Axl. Our results revealed multiple inter-regulatory pathways in Arg-auxotrophic response, consisting of Axl, c-Myc and ASS1, which regulate Arg homeostasis and ADI-PEG20 sensitivity. These pathways provide potential targets for improving the efficacy of treating Arg-auxotrophic tumors using Arg-deprivation strategies.


Assuntos
Antineoplásicos/farmacologia , Arginina/biossíntese , Hidrolases/farmacologia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Polietilenoglicóis/farmacologia , Proteínas Proto-Oncogênicas/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Arginina/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Terapia de Alvo Molecular , Neoplasias/metabolismo , Neoplasias/patologia , Proteínas Proto-Oncogênicas/fisiologia , Receptores Proteína Tirosina Quinases/fisiologia , Transdução de Sinais/fisiologia , Receptor Tirosina Quinase Axl
3.
Br J Cancer ; 106(9): 1481-5, 2012 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-22472884

RESUMO

BACKGROUND: Arginine-depleting therapy with pegylated arginine deiminase (ADI-PEG20) was reported to have activity in advanced melanoma in early phase I-II trial, and clinical trials are currently underway in other cancers. However, the optimal patient population who benefit from this treatment is unknown. METHODS: Advanced melanoma patients with accessible tumours had biopsy performed before the start of treatment with ADI-PEG20 and at the time of progression or relapse when amenable to determine whether argininosuccinate synthetase (ASS) expression in tumour was predictive of response to ADI-PEG20. RESULTS: Twenty-seven of thirty-eight patients treated had melanoma tumours assessable for ASS staining before treatment. Clinical benefit rate (CBR) and longer time to progression were associated with negative expression of tumour ASS. Only 1 of 10 patients with ASS-positive tumours (ASS+) had stable disease, whereas 4 of 17 (24%) had partial response and 5 had stable disease, when ASS expression was negative (ASS-), giving CBR rates of 52.9 vs 10%, P=0.041. Two responding patients with negative ASS expression before therapy had rebiopsy after tumour progression and the ASS expression became positive. The survival of ASS- patients receiving at least four doses at 320 IU m(-2) was significantly better than the ASS+ group at 26.5 vs 8.5 months, P=0.024. CONCLUSION: ADI-PEG20 is safe and the drug is only efficacious in melanoma patients whose tumour has negative ASS expression. Argininosuccinate synthetase tumour positivity is associated with drug resistance and tumour progression.


Assuntos
Arginina/deficiência , Argininossuccinato Sintase/metabolismo , Hidrolases/uso terapêutico , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Melanoma/tratamento farmacológico , Polietilenoglicóis/uso terapêutico , Neoplasias Cutâneas/tratamento farmacológico , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Neoplasias Hepáticas/mortalidade , Neoplasias Hepáticas/secundário , Neoplasias Pulmonares/mortalidade , Neoplasias Pulmonares/secundário , Masculino , Melanoma/mortalidade , Melanoma/patologia , Pessoa de Meia-Idade , Neoplasias Cutâneas/mortalidade , Neoplasias Cutâneas/patologia , Taxa de Sobrevida , Resultado do Tratamento
4.
Curr Mol Med ; 10(4): 405-12, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20459375

RESUMO

The majority of melanoma cells do not express argininosuccinate synthetase (ASS), and hence cannot synthesize arginine from citrulline. Their growth and proliferation depend on exogenous supply of arginine. Arginine degradation using arginine deiminase (ADI) leads to growth inhibition and eventually cell death while normal cell which express ASS can survive. This notion has been translated into clinical trial. Pegylated ADI (ADI-PEG20) has shown antitumor activity in melanoma. However, the sensitivity to ADI is different among ASS(-) melanoma cells. We have investigated and reviewed the signaling pathways which are affected by arginine deprivation and their consequences which lead to cell death. We have found that arginine deprivation inhibits mTOR signaling but leads to activation of MEK and ERK with no changes in BRAF. These changes most likely lead to autophagy, a possible mechanism to survive by recycling intracellular arginine. However apoptosis does occur which can be both caspase dependent or independent In order to increase the therapeutic efficacy of this form of treatment, one should consider adding other agent(s) which can drive the cells toward apoptosis or inhibit the autophagic process.


Assuntos
Apoptose , Arginina/antagonistas & inibidores , Autofagia , Melanoma/terapia , Apoptose/fisiologia , Arginina/metabolismo , Argininossuccinato Sintase/metabolismo , Autofagia/fisiologia , Humanos , Hidrolases/uso terapêutico , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Sistema de Sinalização das MAP Quinases , Melanoma/metabolismo , Melanoma/patologia , Modelos Biológicos , Polietilenoglicóis/uso terapêutico , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR
5.
Eye (Lond) ; 23(6): 1442-50, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19373264

RESUMO

PURPOSE: To access the feasibility of using cultivated oral mucosal epithelial cell transplantation (COMET) for the management of severe corneal burn. METHODS: COMET was performed to promote re-epithelialization in two eyes with acute alkaline burn and one eye with chronic alkaline burn, and to reconstruct the ocular surface in two eyes with chronic thermal burn. Autologous oral mucosal epithelial cells obtained from biopsy were cultivated on amniotic membrane. Immunoconfocal microscopy for keratins and progenitor cell markers was performed to characterize the cultivated epithelial sheet. Following transplantation, the clinical outcome and possible complications were documented. The patients were followed for an averaged 29.6+/-3.6 (range: 26-34) months. RESULTS: Cultivated oral mucosal epithelial sheet expressed keratin 3, 13, and progenitor cell markers p63, p75, and ABCG2. After COMET, all the corneas became less inflamed, and the corneal surface was completely re-epithelialized in 6.0+/-3.2 (range: 3-10) days in all but one patients. Microperforation occurred in one patient, and a small persistent epithelial defect developed in another. Both were solved uneventfully. In all patients, superficial corneal blood vessels invariably developed, and to further improve vision, conjunctivo-limbal autografting (N=3) and/or penetrating keratoplasty (N=3) were performed subsequently. The vision of all patients showed substantial improvement after additional surgeries. CONCLUSIONS: This study showed the potential of COMET to promote re-epithelialization and reduce inflammation in acute corneal burn, and to reconstruct the corneal surface in chronic burn. COMET may, therefore, be considered an alternative treatment for severe corneal burn.


Assuntos
Transplante de Células , Lesões da Córnea , Células Epiteliais/transplante , Queimaduras Oculares/cirurgia , Mucosa Bucal/citologia , Adolescente , Adulto , Âmnio/transplante , Biomarcadores/metabolismo , Queimaduras Químicas/cirurgia , Técnicas de Cultura de Células/métodos , Células Cultivadas , Células Epiteliais/metabolismo , Epitélio Corneano/patologia , Epitélio Corneano/cirurgia , Queimaduras Oculares/patologia , Estudos de Viabilidade , Humanos , Queratinas/metabolismo , Masculino , Pessoa de Meia-Idade , Engenharia Tecidual/métodos , Transplante Autólogo , Adulto Jovem
6.
Xenobiotica ; 38(7-8): 833-62, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18668432

RESUMO

1. The adenosine triphosphate (ATP) binding cassette (ABC) transporters form one of the largest protein families encoded in the human genome, and more than 48 genes encoding human ABC transporters have been identified and sequenced. It has been reported that mutations of ABC protein genes are causative in several genetic disorders in humans. 2. Many human ABC transporters are involved in membrane transport of drugs, xenobiotics, endogenous substances or ions, thereby exhibiting a wide spectrum of biological functions. According to the new nomenclature of human ABC transporter genes, the 'ABCC' gene sub-family comprises three classes involving multidrug resistance-associated proteins (MRPs), sulfonylurea receptors (SURs), and a cystic fibrosis transmembrane conductance regulator (CFTR). 3. Molecular cloning studies have identified a total of ten members of the human MRP class including ABCC11, ABCC12, and ABCC13 (pseudo-gene) that have recently been characterized. 4. This review addresses the historical background and discovery of the ATP-driven xenobiotic export pumps (GS-X pumps) encoded by MRP genes, biological functions of ABC transporters belonging to the MRP class, and regulation of gene expression of MRPs by oxidative stress.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Regulação da Expressão Gênica , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Família Multigênica , Estresse Oxidativo , Transporte Biológico/genética , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Doenças Genéticas Inatas/genética , Doenças Genéticas Inatas/metabolismo , Humanos , Proteínas Associadas à Resistência a Múltiplos Medicamentos/classificação , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Mutação , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/genética , Xenobióticos/farmacocinética
7.
Eur J Pharmacol ; 591(1-3): 124-7, 2008 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-18585380

RESUMO

We show that cisplatin resistance in certain lung cancer cell lines can be reversed through inhibition of mTOR (mammalian Target of Rapamycin). These cell lines appear to possess high levels of phospho-mTOR, phospho-AKT and other growth-related proteins, such as hTERT (human telomerase reverse transcriptase), and Cyclin D3 which decrease upon inhibition of mTOR. Interestingly in one cisplatin resistant cell line which expresses BCL2/BCLxL, treatment with mTOR inhibitor (CCI-779) results in decreased levels of these anti-apoptotic proteins and may contribute to increasing apoptosis. Moreover, continuous exposure to CCI-779 was found to increase the expression of the multi-drug resistant P-gp1(P-gycoprotein1) efflux pump and therefore should be taken into consideration when designing clinical trials with this compound.


Assuntos
Antineoplásicos/farmacologia , Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Proteínas Quinases/efeitos dos fármacos , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/efeitos dos fármacos , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma de Células Pequenas/tratamento farmacológico , Carcinoma de Células Pequenas/patologia , Linhagem Celular Tumoral , Regulação para Baixo/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Fosforilação/efeitos dos fármacos , Proteínas Quinases/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Sirolimo/análogos & derivados , Sirolimo/farmacologia , Serina-Treonina Quinases TOR , Proteína bcl-X/efeitos dos fármacos , Proteína bcl-X/metabolismo
8.
Curr Pharm Des ; 14(11): 1049-57, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18473854

RESUMO

Certain cancers may be auxotrophic for a particular amino acid, and amino acid deprivation is one method to treat these tumors. Arginine deprivation is a novel approach to target tumors which lack argininosuccinate synthetase (ASS) expression. ASS is a key enzyme which converts citrulline to arginine. Tumors which usually do not express ASS include melanoma, hepatocellular carcinoma, some mesotheliomas and some renal cell cancers. Arginine can be degraded by several enzymes including arginine deiminase (ADI). Although ADI is a microbial enzyme from mycoplasma, it has high affinity to arginine and catalyzes arginine to citrulline and ammonia. Citrulline can be recycled back to arginine in normal cells which express ASS, whereas ASS(-) tumor cells cannot. A pegylated form of ADI (ADI-PEG20) has been formulated and has shown in vitro and in vivo activity against melanoma and hepatocellular carcinoma. ADI-PEG20 induces apoptosis in melanoma cell lines. However, arginine deprivation can also induce ASS expression in certain melanoma cell lines which can lead to in vitro drug resistance. Phase I and II clinical trials with ADI-PEG20 have been conducted in patients with melanoma and hepatocellular carcinoma, and antitumor activity has been demonstrated in both cancers. This article reviews our laboratory and clinical experience as well as that from others with ADI-PEG20 as an antineoplastic agent. Future direction in utilizing this agent is also discussed.


Assuntos
Antineoplásicos/farmacologia , Arginina/deficiência , Hidrolases/farmacologia , Polietilenoglicóis/farmacologia , Animais , Antineoplásicos/uso terapêutico , Argininossuccinato Sintase/genética , Carcinoma Hepatocelular/tratamento farmacológico , Ensaios Clínicos como Assunto , Sistemas de Liberação de Medicamentos , Regulação Neoplásica da Expressão Gênica , Humanos , Hidrolases/uso terapêutico , Neoplasias Hepáticas/tratamento farmacológico , Melanoma/tratamento farmacológico , Polietilenoglicóis/uso terapêutico , Neoplasias Cutâneas/tratamento farmacológico
10.
J Biol Chem ; 276(1): 413-20, 2001 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-11020383

RESUMO

Overexpression of multidrug resistance genes and their encoded P-glycoproteins is a major mechanism for the development of multidrug resistance in cancer cells. The hepatocarcinogen 2-acetylaminofluorene (2-AAF) efficiently activates rat mdr1b expression. However, the underlying mechanisms are largely unknown. In this study, we demonstrated that a NF-kappa B site on the mdr1b promoter was required for this induction. Overexpression of antisense p65 and I kappa B alpha partially abolished the induction. We then delineated the pathway through which 2-AAF activates NF-kappa B. 2-AAF treatment led to the increase of intracellular reactive oxygen species (ROS) which causes activation of IKK kinases, degradation of I kappa B beta (but not I kappa B alpha), and increase in NF-kappa B DNA binding activity. Consistent with the idea that ROS may participate in mdr1b regulation, antioxidant N-acetylcysteine inhibited the induction of mdr1b by 2-AAF. Overproduction of a physiological antioxidant glutathione (GSH) blocked the activation of IKK kinase complex and NF-kappa B DNA binding. Based on these results, we conclude that 2-AAF up-regulates mdr1b through the generation of ROS, activation of IKK kinase, degradation of I kappa B beta, and subsequent activation of NF-kappa B. This is the first report that reveals the specific cis-elements and signaling pathway responsible for the induction of mdr1b by the chemical carcinogen 2-AAF.


Assuntos
2-Acetilaminofluoreno/farmacologia , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Carcinógenos/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Proteínas I-kappa B , NF-kappa B/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Acetilcisteína/farmacologia , Animais , DNA/genética , DNA/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Ativação Enzimática/efeitos dos fármacos , Citometria de Fluxo , Genes Reporter , Peróxido de Hidrogênio/farmacologia , Quinase I-kappa B , Estresse Oxidativo/efeitos dos fármacos , Regiões Promotoras Genéticas/genética , Proteínas Serina-Treonina Quinases/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Transdução de Sinais/efeitos dos fármacos , Transfecção , Células Tumorais Cultivadas , Regulação para Cima/efeitos dos fármacos , Membro 4 da Subfamília B de Transportadores de Cassetes de Ligação de ATP
11.
Clin Chem Lab Med ; 38(9): 893-7, 2000 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-11097346

RESUMO

The ATP-binding cassette transmembrane proteins play an important role in transport of drugs as well as of biologically active endogenous substances. The human multidrug resistance-associated protein (MRP) subfamily consists of at least six members, exhibiting a wide spectrum of biological functions. MRP1 operates as an ATP-dependent primary active transporter for substrates conjugated with glucuronide, sulfate or glutathione. Leukotriene C4 is an important endogenous substrate for MRP1. Glutathione serves as a cofactor in MRP1-mediated drug transport as well. Genes encoding both MRP1 and the catalytic subunit of gamma-glutamylcysteine synthetase (gamma-GCS) are coordinately regulated in cultured cancer cell lines as well as colorectal cancer tissues from colon cancer patients. The induction of MRP1 and gamma-GCS expression by oxidative stress varies among different cell lines, and p53 mutations are associated with elevated levels of induction. To modulate the transport function of MRP1, we have synthesized novel glutathione derivatives as photoreactive biochemical probes targeting the transporter protein. GIF-0019 restored the cellular sensitivity of MRP1-overexpressing drug-resistant cancer cells to anticancer prostaglandins in vitro, which was characterized by enhanced mRNA levels of the cyclin-dependent kinase inhibitor p21, suppressed c-myc expression and G1 arrest.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Antineoplásicos/uso terapêutico , Neoplasias do Colo/genética , Neoplasias Colorretais/genética , Resistência a Múltiplos Medicamentos/genética , Família Multigênica , Antineoplásicos/síntese química , Desenho de Fármacos , Glutamato-Cisteína Ligase/genética , Humanos , Proteínas Associadas à Resistência a Múltiplos Medicamentos , Células Tumorais Cultivadas
12.
Mol Carcinog ; 29(2): 103-11, 2000 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-11074607

RESUMO

Recent studies have shown that expression levels of the multidrug resistance gene MDR1, which encodes the drug transporter P-glycoprotein, correlate with prognostic outcomes of certain tumor types. These findings suggest that expression of MDR1 may affect tumor behaviors. To address this issue further, we investigated the expression of mdr1a, a human MDR1 homolog, on the development of hepatocellular carcinoma in a transgenic mouse model carrying the liver-targeted expression of human hepatitis-B virus (HBV) surface antigen. The pathogenetic program was compared in HBV mice carrying either mdr1a(+/+) or mdr1a(-/-). We found that the expressions of proliferative activity markers, Ki67 nuclear antigen, and proliferating cell nuclear antigen were elevated in mdr1a(-/-) mice younger than 10 wk in comparison with those in the same age group of wild-type animals. Replication in the hepatic population as determined by bromodeoxyuridine incorporation tended to support observation that mdr1a(-/-) mice exhibited elevated labeling indices in this age group. Moreover, histologic staining and flow-cytometric analysis showed that the mdr1a(-/-) animals exhibited a higher cell population with polyploidy than did the mdr1a(+/+) counterparts of the same age. However, no significant differences in the expression of the liver-injury markers serum alanine transaminase and aspartate transaminase were observed. Although our results showed that absence of mdr1a expression is correlated with modest enhanced proliferative characteristics in the livers at stage before the development of hepatocellular carcinoma, the overall life spans between these two strains of mice were not significantly different. The implication of these findings to the role of P-glycoprotein in tumor development and cancer chemotherapy is discussed.


Assuntos
Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/genética , Vírus da Hepatite B/genética , Antígeno Ki-67/biossíntese , Neoplasias Hepáticas Experimentais/genética , Antígeno Nuclear de Célula em Proliferação/biossíntese , Subfamília B de Transportador de Cassetes de Ligação de ATP/biossíntese , Transportadores de Cassetes de Ligação de ATP/biossíntese , Alanina Transaminase/metabolismo , Animais , Aspartato Aminotransferases/metabolismo , Divisão Celular/genética , Cruzamentos Genéticos , Modelos Animais de Doenças , Resistência a Múltiplos Medicamentos/genética , Feminino , Expressão Gênica , Antígenos de Superfície da Hepatite B/genética , Vírus da Hepatite B/imunologia , Antígeno Ki-67/genética , Fígado/enzimologia , Neoplasias Hepáticas Experimentais/metabolismo , Neoplasias Hepáticas Experimentais/virologia , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Ploidias , Antígeno Nuclear de Célula em Proliferação/genética
13.
J Cell Physiol ; 185(2): 293-301, 2000 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-11025451

RESUMO

Treatment of human colorectal cancer cells HT29 with interleukin 1beta (IL-1beta) induces expression of the multidrug resistance protein (MRP1) gene encoding the ATP-dependent glutathione S-conjugate export (GS-X) pump and the gamma-glutamylcysteine synthetase (gamma-GCSh) gene encoding heavy (catalytic) subunit of gamma-glutamylcysteine synthetase, the rate-limiting enzyme for the biosynthesis of glutathione (GSH). The induction can be suppressed by N(G)-methyl-L-arginine, a specific inhibitor of nitric oxide synthase (NOS). These results suggest that IL-1beta-mediated MRP1 and gamma-GCSh induction involve nitric oxide (NO) -related signaling. Further supports to the involvement of NO in the induction of MRP1 and gamma-GCSh expression are made by the following observations. (i) Expression of MRP1 and gamma-GCSh genes were induced by treating the cells with NO donors, i.e., S-nitro-N-acetyl-D,L-penicillamide (SNAP) and S-nitroso-L-glutathione, in a concentration-dependent manner. (ii) Ectopic expression of inducible NOS (iNOS) activity by transfecting expressible recombinant iNOS cDNA encoding functional iNOS but not the nonfunctional version resulted in elevated expression of MRP1 and gamma-GCSh. We also demonstrated that HT-29 cells treated with either 1L-1beta or SNAP induced ceramide production, and addition of C2 or C6 ceramides into cultured HT-29 cells resulted in induction of gamma-GCSh but not MRP1 expression. Collectively, our results demonstrate that induction of MRP1 and gamma-GCSh by IL-1beta is regulated, at least in part, by an NO-related signaling, and induction of gamma-GCSh is by NO-related ceramide signaling.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Neoplasias Colorretais/genética , Regulação da Expressão Gênica , Glutamato-Cisteína Ligase/genética , Interleucina-1/farmacologia , Óxido Nítrico/fisiologia , Transdução de Sinais/fisiologia , Ceramidas/genética , Ceramidas/fisiologia , Neoplasias Colorretais/patologia , Humanos , Proteínas Associadas à Resistência a Múltiplos Medicamentos , Doadores de Óxido Nítrico/farmacologia , Óxido Nítrico Sintase/metabolismo , Óxido Nítrico Sintase Tipo II , RNA Mensageiro/metabolismo , Transfecção , Células Tumorais Cultivadas
15.
Oncogene ; 18(30): 4371-82, 1999 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-10439045

RESUMO

Tumor necrosis factor (TNF) is a highly pleiotropic cytokine whose activity is at least partially regulated by the redox status of the cell. The cellular redox status is controlled primarily by glutathione, a major cellular antioxidant, whose synthesis is regulated by the rate-limiting enzyme gamma-glutamylcysteine synthetase (gamma-GCS). In the present report we investigated the effect of gamma-GCS overexpression on the TNF-induced activation of nuclear transcription factors NF-kappa B and AP-1, stress-activated protein kinase/c-Jun amino-terminal kinase (JNK) and apoptosis. Transfection of cells with gamma-GCS cDNA blocked TNF-induced NF-kappa B activation, cytoplasmic I kappa B alpha degradation, nuclear translocation of p65, and NF-kappa B-dependent gene transcription. gamma-GCS overexpression also completely suppressed NF-kappa B activation induced by phorbol ester and okadaic acid, whereas that induced by H2O2, ceramide, and lipopolysaccharide was minimally affected. gamma-GCS also abolished the activation of AP-1 induced by TNF and inhibited TNF-induced activation of JNK and mitogen-activated protein kinase kinase. TNF-mediated cytotoxicity and activation of caspase-3 were both abrogated in gamma-GCS-overexpressing cells. Overall, our results indicate that most of the pleiotropic actions of TNF are regulated by the glutathione-controlled redox status of the cell.


Assuntos
Apoptose , Regulação Neoplásica da Expressão Gênica , Glutamato-Cisteína Ligase/metabolismo , Proteínas Quinases Ativadas por Mitógeno , NF-kappa B/metabolismo , Fator de Transcrição AP-1/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Animais , Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Caspase 3 , Caspases/metabolismo , Núcleo Celular/metabolismo , Relação Dose-Resposta a Droga , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno , Ratos , Fatores de Tempo , Transfecção , Células Tumorais Cultivadas , Células U937
16.
J Biol Chem ; 273(47): 31075-85, 1998 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-9813007

RESUMO

Expression of the MRP1 gene encoding the GS-X pump and of the gamma-GCSh gene encoding the heavy (catalytic) subunit of the gamma-glutamylcysteine synthetase is frequently elevated in many drug-resistant cell lines and can be co-induced by many cytotoxic agents. However, mechanisms that regulate the expression of these genes remain to be elucidated. We report here that like gamma-GCSh, the expression of MRP1 can be induced in cultured cells treated with pro-oxidants such as tert-butylhydroquinone, 2,3-dimethoxy-1, 4-naphthoquinone, and menadione. Intracellular reactive oxygen intermediate (ROI) levels were increased in hepatoma cells treated with tert-butylhydroquinone for 2 h as measured by flow cytometry using an ROI-specific probe, dihydrorhodamine 123. Elevated GSH levels in stably gamma-GCSh-transfected cell lines down-regulated endogenous MRP1 and gamma-GCSh expression. ROI levels in these transfected cells were lower than those in the untransfected control. In the cell lines in which depleting cellular GSH pools did not affect the expression of the MRP1 and gamma-GCSh genes, only minor increased intracellular levels of ROIs were observed. These results suggest that intracellular ROI levels play an important role in the regulation of MRP1 and gamma-GCSh expression. Our data also suggest that elevated intracellular GSH levels not only facilitate substrate transport by the MRP1/GS-X pump as previously demonstrated, but also suppress MRP1 and gamma-GCSh expression.


Assuntos
Proteínas de Transporte/biossíntese , Resistência a Múltiplos Medicamentos/genética , Regulação Neoplásica da Expressão Gênica , Glutamato-Cisteína Ligase/biossíntese , Estresse Oxidativo/genética , Transporte Biológico , Proteínas de Transporte/genética , Citometria de Fluxo , Glutamato-Cisteína Ligase/genética , Glutationa/análise , Glutationa/deficiência , Hidroquinonas/metabolismo , Leucotrieno C4/metabolismo , Proteínas de Membrana Transportadoras , RNA Mensageiro/análise , Espécies Reativas de Oxigênio , Frações Subcelulares/metabolismo , Células Tumorais Cultivadas
17.
Biochem Pharmacol ; 56(1): 7-13, 1998 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-9698083

RESUMO

It has been well established that DNA amplification is one of the important mechanisms by which cultured cells acquire resistance to many cytotoxic compounds. Amplification of important genes including those encoding oncoproteins, growth factors, their receptors and cell-cycle regulators has been reported in human neoplasms. Yet, despite intensive research since the first description of DNA amplification in cultured cells about 20 years ago, the mechanisms of DNA amplification remain largely unknown. Many models have been proposed to account for the diverse manifestations of amplified DNA in many different cell sources. It is not the intention of this commentary to review these many different models. Rather, we wil focus on the recent advances in this area of research, made mainly via the fluorescence in situ hybridization technique, that have revealed a fairly common chromosomal manifestation of amplified DNA in the drug-resistant hamster cell lines and have demonstrated the association of chromosomal fragile site breakage with early events in DNA amplification. These new developments underscore the importance of future research toward understanding the molecular bases of chromosomal fragile sites, including mechanisms involved in DNA strand breakage and repair, chromosomal translocations, and deletions, which may, in turn, provide important new insights into genomic plasticity and neoplastic transformation.


Assuntos
Fragilidade Cromossômica , DNA/genética , Resistência a Medicamentos/genética , Amplificação de Genes , Animais , Sítios Frágeis do Cromossomo , Cricetinae , Humanos
18.
Biochem Biophys Res Commun ; 247(3): 859-63, 1998 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-9647783

RESUMO

Overexpression of the multidrug resistance-associated protein (MRP1) gene encoding a human GS-X pump in cultured cells resulted in increased cellular resistance to antitumor agents, including doxorubicin (Dox) and daunomycin (Dau), as well as certain heavy metals. However, studies with membrane vesicles prepared from the resistant cells revealed that Dox and Dau are poor substrates for the transport mediated by MRP/GS-X pump, suggesting that metabolic modifications of these drugs might be required for the transport. To test this hypothesis, we prepared four glutathione conjugates by linking the cysteine residue of GSH to Dox and Dau at eitehr the C-7 or C-14 position. The affinity of the synthesized conjugates toward MRP/GS-X pump was examined in the LTC4 transport assay using membrane vesicles prepared from an MRP1 gene-overexpressing cell line, SR3A. Unconjugated Dox and Dau failed to inhibit the transport of LTC4, whereas 30 microM GS-Dox or GS-Dau conjugates completely inhibited the transport. Kinetic analyses revealed that the inhibition by these GS-conjugates is competitive with Ki values ranging from 60 to 200 nM, suggesting that these compounds have high affinities toward MRP/GS-X pump and share the common binding site(s) with LTC4. Our present results support the hypothesis that glutathionation can facilitate the transport of anthracyclines by the MRP/GS-X pump.


Assuntos
Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Proteínas de Transporte/antagonistas & inibidores , Daunorrubicina/farmacologia , Doxorrubicina/farmacologia , Glutationa/metabolismo , Leucotrieno C4/farmacocinética , Trifosfato de Adenosina/farmacologia , Sítios de Ligação/fisiologia , Ligação Competitiva/fisiologia , Transporte Biológico , Daunorrubicina/análogos & derivados , Doxorrubicina/análogos & derivados , Resistência a Múltiplos Medicamentos/fisiologia , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Cinética , Proteínas de Membrana Transportadoras , Estrutura Molecular , Proteínas Associadas à Resistência a Múltiplos Medicamentos , Proteínas de Neoplasias/antagonistas & inibidores , Células Tumorais Cultivadas
19.
J Biol Chem ; 273(25): 15387-94, 1998 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-9624121

RESUMO

The expression of P-glycoproteins encoded by the mdr gene family is associated with the emergence of the multidrug resistance phenotype in animal cells. mdr expression can be induced by many extracellular stimulants including cytotoxic drugs and chemical carcinogens. However, little is known about the mechanisms involved. Here, we report that the expression of the rat mdr1b can be induced by anticancer drug daunorubicin. Further analysis identified a bona fide p53-binding site spanning from base pairs -199 to -180 (5'-GAACATGTAGAGACATGTCT-3') in the rat mdr1b promoter that is essential for basal and daunorubicin-inducible promoter activities. In addition, our results show that wild-type p53 can up-regulate not only the promoter function but also endogenous expression of the rat mdr1b. To the best of our knowledge, this is the first report showing that a specific p53-binding site is involved in the transcriptional regulation of mdr gene by wild-type p53. Since p53 is a sensor for a wide variety of genotoxic stresses, our finding has broad implications for understanding the mechanisms involved in the inducible expression of mdr gene by anticancer drugs, chemical carcinogens, UV light, and other DNA-damaging agents.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/biossíntese , Antibióticos Antineoplásicos/farmacologia , Daunorrubicina/farmacologia , Regulação da Expressão Gênica , Genes MDR/genética , Proteína Supressora de Tumor p53/fisiologia , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Animais , Sequência de Bases , Sítios de Ligação , Dano ao DNA , Dados de Sequência Molecular , Regiões Promotoras Genéticas , Ratos , Células Tumorais Cultivadas
20.
Biochem Pharmacol ; 55(5): 605-15, 1998 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-9515571

RESUMO

Expression of the multidrug-resistance protein gene MRP, which confers non-P-glycoprotein-mediated multidrug resistance, has been found in many drug-resistant variants and tumor samples. Recent studies have demonstrated that MRP functions as an ATP-dependent transporter functionally related to the previously described glutathione-conjugate (GS-X) pump. We have shown recently that the MRP and gamma-glutamylcysteine synthetase (gamma-GCS) heavy subunit mRNA levels are coordinately overexpressed in cisplatin (CP)-resistant human leukemia cells (Ishikawa et al., J Biol Chem 271: 14981-14988, 1996) and frequently co-elevated in human colorectal tumors (Kuo et al., Cancer Res 56: 3642-3644, 1996). In the present study, we showed the coexpression patterns of thirteen additional human drug-resistant cell lines representing different tumor cell origins selected with different agents, except for one doxorubicin-selected line which demonstrated minor elevation in MRP mRNA with no detectable increase in gamma-GCS mRNA, suggesting that the increase of MRP mRNA preceded the increase in gamma-GCS mRNA. Furthermore, in seventeen randomly selected untreated tumor cell lines, the overall correlation coefficient between MRP and gamma-GCS mRNA levels was 0.861. In normal mice, the correlation coefficient of mrp and gamma-gcs mRNA was 0.662 in fourteen tissues (kidney and liver were not included) analyzed. Kidney and liver expressed low levels of mrp relative to gamma-gcs; however, these two tissues expressed high levels of a functionally related mrp homologue, mrp2 (cMoat or cMrp), which may have compensated for the underexpressed mrp in maintaining the total GS-X pump activities. Altogether, these results demonstrated the frequent coexpression of these two genes in various cell settings.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Resistencia a Medicamentos Antineoplásicos/genética , Resistência a Medicamentos/genética , Glutamato-Cisteína Ligase/genética , RNA Mensageiro/genética , Transportadores de Cassetes de Ligação de ATP/química , Sequência de Aminoácidos , Animais , Linhagem Celular , Humanos , Camundongos , Dados de Sequência Molecular , Proteínas Associadas à Resistência a Múltiplos Medicamentos , Fragmentos de Peptídeos/imunologia , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...