Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 23(22): 10490-10497, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37909686

RESUMO

The energy transfer (ET) between organic molecules and semiconductors is a crucial mechanism for enhancing the performance of semiconductor-based optoelectronic devices, but it remains undiscovered. Here, ultrafast optical pump-probe spectroscopy was utilized to directly reveal the ET between organic Alq3 molecules and Si semiconductors. Ultrathin SiO2 dielectric layers with a thickness of 3.2-10.8 nm were inserted between Alq3 and Si to prevent charge transfer. By means of the ET from Alq3 to Si, the SiO2 thickness-dependent relaxation dynamics of photoexcited carriers in Si have been unambiguously observed on the transient reflectivity change (ΔR/R) spectra, especially for the relaxation process on a time scale of 200-350 ps. In addition, these findings also agree with the results of our calculation in a model of long-range dipole-dipole interactions, which provides critical information for developing future optoelectronic devices.

2.
Nat Commun ; 14(1): 5243, 2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37640725

RESUMO

The scaling of transistors with thinner channel thicknesses has led to a surge in research on two-dimensional (2D) and quasi-2D semiconductors. However, modulating the threshold voltage (VT) in ultrathin transistors is challenging, as traditional doping methods are not readily applicable. In this work, we introduce a optical-thermal method, combining ultraviolet (UV) illumination and oxygen annealing, to achieve broad-range VT tunability in ultrathin In2O3. This method can achieve both positive and negative VT tuning and is reversible. The modulation of sheet carrier density, which corresponds to VT shift, is comparable to that obtained using other doping and capacitive charging techniques in other ultrathin transistors, including 2D semiconductors. With the controllability of VT, we successfully demonstrate the realization of depletion-load inverter and multi-state logic devices, as well as wafer-scale VT modulation via an automated laser system, showcasing its potential for low-power circuit design and non-von Neumann computing applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...