Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
APL Bioeng ; 4(2): 026107, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32548541

RESUMO

Cyclic myometrial contractions of the non-pregnant uterus induce intra-uterine peristaltic flows, which have important roles in transport of sperm and embryos during early stages of reproduction. Hyperperistalsis in young females may lead to migration of endometrial cells and development of adenomyosis or endometriosis. We conducted an in vitro study of the biological response of a tissue engineered endometrial barrier exposed to peristaltic wall shear stresses (PWSSs). The endometrial barrier model was co-cultured of endometrial epithelial cells on top of myometrial smooth muscle cells (MSMCs) in custom-designed wells that can be disassembled for mechanobiology experiments. A new experimental setup was developed for exposing the uterine wall in vitro model to PWSSs that mimic the in vivo intra-uterine environment. Peristaltic flow was induced by moving a belt with bulges to deform the elastic cover of a fluid filled chamber that held the uterine wall model at the bottom. The in vitro biological model was exposed to peristaltic flows for 60 and 120 min and then stained for immunofluorescence studies of alternations in the cytoskeleton. Quantification of the F-actin mass in both layers revealed a significant increase with the length of exposure to PWSSs. Moreover, the inner layer of MSMCs that were not in direct contact with the fluid also responded with an increase in the F-actin mass. This new experimental approach can be expanded to in vitro studies of multiple structural changes and genetic expressions, while the tissue engineered uterine wall models are tested under conditions that mimic the in vivo physiological environment.

2.
Biomech Model Mechanobiol ; 19(5): 1629-1639, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31997029

RESUMO

The human uterus is composed of three layers: endometrium, myometrium and perimetrium. It remodels during the monthly menstrual cycle and more significantly during the complex stages of reproduction. In vivo studies of the human uterine wall are yet incomplete due to ethical and technical limitations. The objective of this study was to develop in vitro uterine wall models that mimic the in vivo structure in humans. We co-cultured multiple cellular models of endometrial epithelial cells, endometrial stromal cells and smooth muscle cells on a synthetic membrane mounted in multi-purpose custom-designed wells. Immunofluorescence staining and confocal imaging confirmed that the new model represents the in vivo anatomical architecture of the inner uterine wall. Hormonal treatment with progesterone and ß-estradiol demonstrated increased expression of progestogen-associated endometrial protein, which is associated with the in vivo receptive uterus. The new tissue-engineered in vitro models of the uterine wall will enable deeper investigation of molecular and biomechanical aspects of the blastocyst-uterus interaction during the window of implantation.


Assuntos
Modelos Biológicos , Engenharia Tecidual , Útero/citologia , Linhagem Celular , Endométrio/citologia , Feminino , Humanos , Imageamento Tridimensional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...