Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Elife ; 102021 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-34586067

RESUMO

The complement system is a critical host defense against infection, playing a protective role that can also enhance disease if dysregulated. Although many consequences of complement activation during viral infection are well established, mechanisms that determine the extent to which viruses activate complement remain elusive. Here, we investigate complement activation by human respiratory syncytial virus (RSV), a filamentous respiratory pathogen that causes significant morbidity and mortality. By engineering a strain of RSV harboring tags on the surface glycoproteins F and G, we are able to monitor opsonization of single RSV particles using fluorescence microscopy. These experiments reveal an antigenic hierarchy, where antibodies that bind toward the apex of F in either the pre- or postfusion conformation activate the classical pathway whereas other antibodies do not. Additionally, we identify an important role for virus morphology in complement activation: as viral filaments age, they undergo a morphological transformation which lowers the threshold for complement deposition through changes in surface curvature. Collectively, these results identify antigenic and biophysical characteristics of virus particles that contribute to the formation of viral immune complexes, and suggest models for how these factors may shape disease severity and adaptive immune responses to RSV.


Assuntos
Proteínas do Sistema Complemento/metabolismo , Vírus Sinciciais Respiratórios/metabolismo , Animais , Anticorpos Antivirais/imunologia , Linhagem Celular , Ativação do Complemento , Humanos , Modelos Biológicos , Infecções por Vírus Respiratório Sincicial/imunologia , Infecções por Vírus Respiratório Sincicial/virologia , Vírus Sinciciais Respiratórios/imunologia
2.
Bioconjug Chem ; 32(1): 111-120, 2021 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-33306347

RESUMO

Virus-like particles (VLPs) show considerable promise for the in vivo delivery of therapeutic compounds such as bioactive venom peptides. While loading and targeting protocols have been developed for numerous VLP prototypes, induced disassembly under physiological conditions of neutral pH, moderate temperature, and aqueous medium remain a challenge. Here, we implement and evaluate a general mechanism, based on ring-opening metathesis polymerization (ROMP), for controllable VLP disassembly. This mechanism is independent of cell-specific factors or the manipulation of environmental conditions such as pH and temperature that cannot be readily controlled in vivo. The ROMP substrate norbornene is covalently conjugated to surface-exposed lysine residues of a P22 bacteriophage-derived VLP, and ROMP is induced by treatment with the water-soluble ruthenium catalyst AquaMet. Disruption of the P22 shell and release of a GFP reporter is confirmed via native agarose electrophoresis, TEM, and dynamic light scattering (DLS) analyses. Our ROMP disassembly strategy does not depend on the particular structure or morphology of the P22 nanocontainer and is adaptable to other VLP prototypes for the potential delivery of venom peptides for pharmacological applications.


Assuntos
Sistemas de Liberação de Medicamentos , Peptídeos/administração & dosagem , Peçonhas/administração & dosagem , Vírion/química , Catálise , Humanos , Microscopia Eletrônica de Transmissão , Polimerização , Peçonhas/química
3.
PLoS One ; 13(7): e0199015, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30020927

RESUMO

DNA barcoding is both an important research and science education tool. The technique allows for quick and accurate species identification using only minimal amounts of tissue samples taken from any organism at any developmental phase. DNA barcoding has many practical applications including furthering the study of taxonomy and monitoring biodiversity. In addition to these uses, DNA barcoding is a powerful tool to empower, engage, and educate students in the scientific method while conducting productive and creative research. The study presented here provides the first assessment of Marine Park (Brooklyn, New York, USA) biodiversity using DNA barcoding. New York City citizen scientists (high school students and their teachers) were trained to identify species using DNA barcoding during a two-week long institute. By performing NCBI GenBank BLAST searches, students taxonomically identified 187 samples (1 fungus, 70 animals and 116 plants) and also published 12 novel DNA barcodes on GenBank. Students also identified 7 ant species and demonstrated the potential of DNA barcoding for identification of this especially diverse group when coupled with traditional taxonomy using morphology. Here we outline how DNA barcoding allows citizen scientists to make preliminary taxonomic identifications and contribute to modern biodiversity research.


Assuntos
Biodiversidade , Código de Barras de DNA Taxonômico/métodos , DNA/genética , Plantas/genética , Academias e Institutos , DNA/classificação , Bases de Dados de Ácidos Nucleicos , Testes Diagnósticos de Rotina , Leucócitos , Cidade de Nova Iorque , Plantas/classificação , Estudantes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...