Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 132(15): 155102, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38683000

RESUMO

We present the first experimental study of plasmoid formation in a magnetic reconnection layer undergoing rapid radiative cooling, a regime relevant to extreme astrophysical plasmas. Two exploding aluminum wire arrays, driven by the Z machine, generate a reconnection layer (S_{L}≈120) in which the cooling rate far exceeds the hydrodynamic transit rate (τ_{hydro}/τ_{cool}>100). The reconnection layer generates a transient burst of >1 keV x-ray emission, consistent with the formation and subsequent rapid cooling of the layer. Time-gated x-ray images show fast-moving (up to 50 km s^{-1}) hotspots in the layer, consistent with the presence of plasmoids in 3D resistive magnetohydrodynamic simulations. X-ray spectroscopy shows that these hotspots generate the majority of Al K-shell emission (around 1.6 keV) prior to the onset of cooling, and exhibit temperatures (170 eV) much greater than that of the plasma inflows and the rest of the reconnection layer, thus providing insight into the generation of high-energy radiation in radiatively cooled reconnection events.

2.
Appl Radiat Isot ; 176: 109853, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34298462

RESUMO

The advances of laser-driven electron acceleration offer the promise of great reductions in the size of high-energy electron accelerator facilities. Accordingly, it is desirable to design compact radiation shielding for such facilities. A key component of radiation shielding is the high-energy electron beam dump. In an effort to optimize the electron beam dump design, different material combinations have been simulated with the FLUKA Monte Carlo code in the range of 1-40 GeV. The studied beam dump configurations consist of alternating layers of high-Z material (lead or iron) and low-Z material (high-density concrete or borated polyethylene) in either three-layer or five-layer structures. The designs of various beam dump configuration have been compared and it has been found that the iron and concrete stacking in a three-layer structure with a thick iron layer results in the lowest dose at 1, 10, and 40 GeV. The performance of the beam dump exhibits a strong dependence on the selected materials, the stacking method, the beam dump thickness, as well as the electron energy. This parametric study provides general insights that can be used for compact shielding design of future electron accelerator facilities.

3.
Rev Sci Instrum ; 91(6): 063507, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32611066

RESUMO

Magnetized Liner Inertial Fusion (MagLIF) at Sandia National Laboratories involves a laser preheating stage where a few-ns laser pulse passes through a few-micron-thick plastic window to preheat gaseous fusion fuel contained within the MagLIF target. Interactions with this window reduce heating efficiency and mix window and target materials into the fuel. A recently proposed idea called "Laser Gate" involves removing the window well before the preheating laser is applied. In this article, we present experimental proof-of-principle results for a pulsed-power implementation of Laser Gate, where a thin current-carrying wire weakens the perimeter of the window, allowing the fuel pressure to push the window open and away from the preheating laser path. For this effort, transparent targets were fabricated and a test facility capable of studying this version of Laser Gate was developed. A 12-frame bright-field laser schlieren/shadowgraphy imaging system captured the window opening dynamics on microsecond timescales. The images reveal that the window remains largely intact as it opens and detaches from the target. A column of escaping pressurized gas appears to prevent the detached window from inadvertently moving into the preheating laser path.

4.
Phys Rev Lett ; 122(22): 225001, 2019 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-31283266

RESUMO

The creation and disruption of inertially collimated plasma flows are investigated through experiment, simulation, and analytical modeling. Supersonic plasma jets are generated by laser-irradiated plastic cones and characterized by optical interferometry measurements. Targets are magnetized with a tunable B field with strengths of up to 5 T directed along the axis of jet propagation. These experiments demonstrate a hitherto unobserved phenomenon in the laboratory, the magnetic disruption of inertially confined plasma jets. This occurs due to flux compression on axis during jet formation and can be described using a Lagrangian-cylinder model of plasma evolution implementing finite resistivity. The basic physical mechanisms driving the dynamics of these systems are described by this model and then compared with two-dimensional radiation-magnetohydrodynamic simulations. Experimental, computational, and analytical results discussed herein suggest that contemporary models underestimate the electrical conductivity necessary to drive the amount of flux compression needed to explain observations of jet disruption.

5.
Rev Sci Instrum ; 89(10): 10F105, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30399938

RESUMO

We present an experimental design for a radiation hydrodynamics experiment at the National Ignition Facility that measures the electron temperature of a shocked region using the x-ray Thomson scattering technique. Previous National Ignition Facility experiments indicate a reduction in Rayleigh-Taylor instability growth due to high energy fluxes, compared to the shocked energy flux, from radiation and electron heat conduction. In order to better quantify the effects of these energy fluxes, we modified the previous experiment to allow for non-collective x-ray Thomson scattering to measure the electron temperature. Photometric calculations combined with synthetic scattering spectra demonstrate an estimated noise.

6.
Nat Commun ; 9(1): 1564, 2018 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-29674695

RESUMO

Energy-transport effects can alter the structure that develops as a supernova evolves into a supernova remnant. The Rayleigh-Taylor instability is thought to produce structure at the interface between the stellar ejecta and the circumstellar matter, based on simple models and hydrodynamic simulations. Here we report experimental results from the National Ignition Facility to explore how large energy fluxes, which are present in supernovae, affect this structure. We observed a reduction in Rayleigh-Taylor growth. In analyzing the comparison with supernova SN1993J, a Type II supernova, we found that the energy fluxes produced by heat conduction appear to be larger than the radiative energy fluxes, and large enough to have dramatic consequences. No reported astrophysical simulations have included radiation and heat conduction self-consistently in modeling supernova remnants and these dynamics should be noted in the understanding of young supernova remnants.

7.
Rev Sci Instrum ; 87(11): 11D831, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27910335

RESUMO

Ultra-intense short pulse lasers incident on solid targets (e.g., thin Au foils) produce well collimated, broad-spectrum proton beams. These proton beams can be used to characterize magnetic fields, electric fields, and density gradients in high energy-density systems. The LLNL-Imaging Proton Spectrometer (L-IPS) was designed and built [H. Chen et al., Rev. Sci. Instrum. 81, 10D314 (2010)] for use with such laser produced proton beams. The L-IPS has an energy range of 50 keV-40 MeV with a resolving power (E/dE) of about 275 at 1 MeV and 21 at 20 MeV, as well as a single spatial imaging axis. In order to better characterize the dispersion and imaging capability of this diagnostic, a 3D finite element analysis solver is used to calculate the magnetic field of the L-IPS. Particle trajectories are then obtained via numerical integration to determine the dispersion relation of the L-IPS in both energy and angular space.

8.
Nat Commun ; 7: 13081, 2016 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-27713403

RESUMO

The remarkable discovery by the Chandra X-ray observatory that the Crab nebula's jet periodically changes direction provides a challenge to our understanding of astrophysical jet dynamics. It has been suggested that this phenomenon may be the consequence of magnetic fields and magnetohydrodynamic instabilities, but experimental demonstration in a controlled laboratory environment has remained elusive. Here we report experiments that use high-power lasers to create a plasma jet that can be directly compared with the Crab jet through well-defined physical scaling laws. The jet generates its own embedded toroidal magnetic fields; as it moves, plasma instabilities result in multiple deflections of the propagation direction, mimicking the kink behaviour of the Crab jet. The experiment is modelled with three-dimensional numerical simulations that show exactly how the instability develops and results in changes of direction of the jet.


Assuntos
Fenômenos Astronômicos , Campos Magnéticos , Modelos Teóricos , Gases em Plasma , Simulação por Computador , Lasers
9.
Nat Commun ; 7: ncomms11899, 2016 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-27291065

RESUMO

Astrophysical flows exhibit rich behaviour resulting from the interplay of different forms of energy-gravitational, thermal, magnetic and radiative. For magnetic cataclysmic variable stars, material from a late, main sequence star is pulled onto a highly magnetized (B>10 MG) white dwarf. The magnetic field is sufficiently large to direct the flow as an accretion column onto the poles of the white dwarf, a star subclass known as AM Herculis. A stationary radiative shock is expected to form 100-1,000 km above the surface of the white dwarf, far too small to be resolved with current telescopes. Here we report the results of a laboratory experiment showing the evolution of a reverse shock when both ionization and radiative losses are important. We find that the stand-off position of the shock agrees with radiation hydrodynamic simulations and is consistent, when scaled to AM Herculis star systems, with theoretical predictions.

10.
Artigo em Inglês | MEDLINE | ID: mdl-31093029

RESUMO

Experiments were performed at the LLNL Titan laser to measure the propagation direction of the energetic electrons that were generated during the interaction of the polarized laser beam with solid targets in the case of normal incidence. The energetic electrons propagated through vacuum to spectator metal wires in the polarization direction and in the perpendicular direction, and the K shell spectra from the different wire materials were recorded as functions of the distance from the laser focal spot. It was found that the fluence of the energetic electrons driven into the spectator wires in the polarization direction compared to the perpendicular direction was larger and increased with the distance from the focal spot. This indicates that energetic electrons are preferentially driven in the direction of the intense oscillating electric field of the incident laser beam in agreement with the multiphoton inverse Bremsstrahlung absorption process.

11.
Phys Rev Lett ; 115(14): 145001, 2015 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-26551815

RESUMO

We report the first observation, in a supersonic flow, of the evolution of the Kelvin-Helmholtz instability from a single-mode initial condition. To obtain these data, we used a novel experimental system to produce a steady shock wave of unprecedented duration in a laser-driven experiment. The shocked, flowing material creates a shear layer between two plasmas at high energy density. We measured the resulting interface structure using radiography. Hydrodynamic simulations reproduce the large-scale structures very well and the medium-scale structures fairly well, and imply that we observed the expected reduction in growth rate for supersonic shear flow.

12.
Rev Sci Instrum ; 85(11): 11D618, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25430194

RESUMO

A high resolution crystal spectrometer utilizing a crystal in transmission geometry has been developed and experimentally optimized to measure the widths of emission lines in the 10-60 keV energy range with eV accuracy. The spectrometer achieves high spectral resolution by utilizing crystal planes with small lattice spacings (down to 2d = 0.099 nm), a large crystal bending radius and Rowland circle diameter (965 mm), and an image plate detector with high spatial resolution (60 µm in the case of the Fuji TR image plate). High resolution W L-shell and K-shell laboratory test spectra in the 10-60 keV range and Ho K-shell spectra near 47 keV recorded at the LLNL Titan laser facility are presented. The Ho K-shell spectra are the highest resolution hard x-ray spectra recorded from a solid target irradiated by a high-intensity laser.

13.
Rev Sci Instrum ; 85(11): 11E602, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25430348

RESUMO

Experiments at the Trident Laser Facility have successfully demonstrated the use of x-ray fluorescence imaging (XRFI) to diagnose shocked carbonized resorcinol formaldehyde (CRF) foams doped with Ti. One laser beam created a shock wave in the doped foam. A second laser beam produced a flux of vanadium He-α x-rays, which in turn induced Ti K-shell fluorescence within the foam. Spectrally resolved 1D imaging of the x-ray fluorescence provided shock location and compression measurements. Additionally, experiments using a collimator demonstrated that one can probe specific regions within a target. These results show that XRFI is a capable alternative to path-integrated measurements for diagnosing hydrodynamic experiments at high energy density.

14.
Rev Sci Instrum ; 85(11): 11E610, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25430356

RESUMO

Hard x-rays from laser-produced hot electrons (>10 keV) in backlit pinhole imagers can give rise to a background signal that decreases signal dynamic range in radiographs. Consequently, significant uncertainties are introduced to the measured optical depth of imaged plasmas. Past experiments have demonstrated that hard x-rays are produced when hot electrons interact with the high-Z pinhole substrate used to collimate the softer He-α x-ray source. Results are presented from recent experiments performed on the OMEGA-60 laser to further study the production of hard x-rays in the pinhole substrate and how these x-rays contribute to the background signal in radiographs. Radiographic image plates measured hard x-rays from pinhole imagers with Mo, Sn, and Ta pinhole substrates. The variation in background signal between pinhole substrates provides evidence that much of this background comes from x-rays produced in the pinhole substrate itself. A Monte Carlo electron transport code was used to model x-ray production from hot electrons interacting in the pinhole substrate, as well as to model measurements of x-rays from the irradiated side of the targets, recorded by a bremsstrahlung x-ray spectrometer. Inconsistencies in inferred hot electron distributions between the different pinhole substrate materials demonstrate that additional sources of hot electrons beyond those modeled may produce hard x-rays in the pinhole substrate.

15.
Rev Sci Instrum ; 85(11): 11E812, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25430377

RESUMO

Creating magnetized jets in the laboratory is relevant to studying young stellar objects, but generating these types of plasmas within the laboratory setting has proven to be challenging. Here, we present the construction of a solenoid designed to produce an axial magnetic field with strengths in the gap of up to 5 T. This novel design was a compact 75 mm × 63 mm × 88 mm, allowing it to be placed in the Titan target chamber. It was robust, surviving over 50 discharges producing fields ≲ 5 T, reaching a peak magnetic field of 12.5 T.


Assuntos
Campos Magnéticos , Gases em Plasma
16.
Phys Rev Lett ; 111(23): 235003, 2013 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-24476281

RESUMO

Monoenergetic-proton radiographs of laser-generated, high-Mach-number plasma jets colliding at various angles shed light on the structures and dynamics of these collisions. The observations compare favorably with results from 2D hydrodynamic simulations of multistream plasma jets, and also with results from an analytic treatment of electron flow and magnetic field advection. In collisions of two noncollinear jets, the observed flow structure is similar to the analytic model's prediction of a characteristic feature with a narrow structure pointing in one direction and a much thicker one pointing in the opposite direction. Spontaneous magnetic fields, largely azimuthal around the colliding jets and generated by the well-known ∇T(e)×∇n(e) Biermann battery effect near the periphery of the laser spots, are demonstrated to be "frozen in" the plasma (due to high magnetic Reynolds number Re(M)∼5×10(4)) and advected along the jet streamlines of the electron flow. These studies provide novel insight into the interactions and dynamics of colliding plasma jets.

17.
Rev Sci Instrum ; 83(10): 10E114, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23126936

RESUMO

We have measured the x-ray emission, primarily from K(α),K(ß), and He(α) lines, of elemental copper foil and "foam" targets irradiated with a mid-10(16) W/cm(2) laser pulse. The copper foam at 0.1 times solid density is observed to produce 50% greater He(α) line emission than copper foil, and the measured signal is well-fit by a sum of three synthetic spectra generated by the atomic physics code FLYCHK. Additionally, spectra from both targets reveal characteristic inner shell K(α) transitions from hot electron interaction with the bulk copper. However, only the larger-volume foam target produced significant K(ß) radiation, confirming a lower bulk temperature in the higher volume sample.

18.
Rev Sci Instrum ; 83(10): 10E528, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23127035

RESUMO

Backlit pinhole x-ray radiography has provided high-resolution images in many recent high-energy-density laser experiments. Its aim is to image the object of interest with a roughly monochromatic Kα source. However, despite the high intrinsic brightness achieved by the technique, data on x-ray film have shown a signal to background ratio near one, with data on image plates producing a higher background. This has been attributed, without direct evidence, to the interaction of suprathermal electrons with the (high Z) pinhole substrate. We present here the first direct measurement of the hard x-rays produced by such a backlighter target and a test of an approach to reducing the background. Specifically, a thick, low-Z layer was added on the side of the substrate toward the detector, intended to stop the energetic electrons and produce smaller emissions. Results from the Omega-60 laser experiment showed that the oft-seen background signal is in the range of 60-80 keV, a plausible energy range for energetic electrons produced in the laser-irradiated plasma. It also showed a comparable level of background signal in both types of targets. The work presented here includes target design and motivating theory, as well as the unexpected findings about x-ray background production.

19.
Phys Rev Lett ; 109(15): 155004, 2012 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-23102319

RESUMO

Following the successful demonstration of an OMEGA laser-driven platform for generating and studying nearly two-dimensional unstable plasma shear layers [Hurricane et al., Phys. Plasmas 16, 056305 (2009); Harding et al., Phys. Rev. Lett. 103, 045005 (2009)], this Letter reports on the first quantitative measurement of turbulent mixing in a high-energy-density plasma. As a blast wave moves parallel to an unperturbed interface between a low-density foam and a high-density plastic, baroclinic vorticity is deposited at the interface and a Kelvin-Helmholtz instability-driven turbulent mixing layer is created in the postshock flow due to surface roughness. The spatial scale and density profile of the turbulent layer are diagnosed using x-ray radiography with sufficiently small uncertainty so that the data can be used to ~0.17 µm) in the postshock plasma flow are consistent with an "inertial subrange," within which a Kolmogorov turbulent energy cascade can be active. An illustration of comparing the data set with the predictions of a two-equation turbulence model in the ares radiation hydrodynamics code is also presented.

20.
Rev Sci Instrum ; 81(10): 10E536, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21034063

RESUMO

Experiments on the National Ignition Facility (NIF) will require bright, short duration, near-monochromatic x-ray backlighters for radiographic diagnosis of many high-energy density systems. This paper details a vanadium pinhole backlighter producing (1.8±0.5)×10(15) x-ray photons into 4π sr near the vanadium He-like characteristic x-ray energy of 5.18 keV. The x-ray yield was quantified from a set of Ross filters imaged to a calibrated image plate, with the Dante diagnostic used to confirm the quasimonochromatic nature of the spectrum produced. Additionally, an x-ray film image shows a source-limited image resolution of 26 µm from a 20 µm diameter pinhole.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...