Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Transl Oncol ; 28: 101608, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36577166

RESUMO

Pancreatic cancer (PC) is an aggressive malignancy with few treatment options, and improved treatment strategies are urgently required. TYRO3, a member of the TAM receptor tyrosine kinase family, is a known oncogene; however, the relationship between TYRO3 expression and PC chemoresistance remains to be elucidated. We performed gain- and loss-of-function experiments on TYRO3 to examine whether it is involved in chemoresistance in PC cells. TYRO3 knockdown decreased cell viability and enhanced apoptosis following treatment of PC cells with gemcitabine and 5-fluorouracil (5-FU). In contrast, no such effects were observed in TYRO3-overexpressing PC cells. It is known that autophagy is associated with cancer chemoresistance. We then examined effects of TYRO3 on autophagy in PC cells. TYRO3 overexpression increased LC3 mRNA levels and induced LC3 puncta in PC cells. Inhibition of autophagy by chloroquine mitigated cell resistance to gemcitabine and 5-FU. In a xenograft mouse model, TYRO3 silencing significantly increased sensitivity of the cells to gemcitabine and 5-FU. To further investigate the involvement of autophagy in patients with PC, we immunohistochemically analyzed LC3 expression in the tissues of patients who underwent pancreatectomy and compared it with disease prognosis and TYRO3 expression. LC3 expression was negatively and positively correlated with prognosis and TYRO3 expression, respectively. Furthermore, LC3- and TYRO3-positive patients had a significantly worse prognosis among patients with PC who received chemotherapy after recurrence. These results indicated that the TYRO3-autophagy signaling pathway confers PC resistance to gemcitabine and 5-FU, and could be a novel therapeutic target to resolve PC chemoresistance.

2.
J Clin Biochem Nutr ; 70(3): 222-230, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35692678

RESUMO

Coenzyme Q10 (CoQ10) promotes wound healing in vitro and in vivo. However, the molecular mechanisms underlying the promoting effects of CoQ10 on wound repair remain unknown. In the present study, we investigated the molecular mechanisms through which CoQ10 induces wound repair using a cellular wound-healing model. CoQ10 promoted wound closure in a dose-dependent manner and wound-mediated cell polarization after wounding in HaCaT cells. A comparison with other CoQ homologs, benzoquinone derivatives, and polyisoprenyl compounds suggested that the whole structure of CoQ10 is required for potent wound repair. The phosphorylation of Akt after wounding and the plasma membrane translocation of Akt were elevated in CoQ10-treated cells. The promoting effect of CoQ10 on wound repair was abrogated by co-treatment with a phosphatidylinositol 3-kinase (PI3K) inhibitor. Immuno-histochemical and biochemical analyses showed that CoQ10 increased the localization of caveolin-1 (Cav-1) to the apical membrane domains of the cells and the Cav-1 content in the membrane-rich fractions. Depletion of Cav-1 suppressed CoQ10-mediated wound repair and PI3K/Akt signaling activation in HaCaT cells. These results indicated that CoQ10 increases the translocation of Cav-1 to the plasma membranes, activating the downstream PI3K/Akt signaling pathway, and resulting in wound closure in HaCaT cells.

3.
Cancer Lett ; 470: 149-160, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31765735

RESUMO

The expression and functions of TYRO3, a member of the TAM receptor tyrosine kinase family, in pancreatic cancer (PC) have not been specifically elucidated. In this study, we confirmed TYRO3 expression in five human PC cell lines (PANC-1, MIA PaCa-2, BxPC-3, AsPC-1, and PK-9) using Western blotting. TYRO3 silencing and overexpression studies have revealed that TYRO3 promotes cell proliferation and invasion in PC via phosphorylation of protein kinase B (Akt) and extracellular signal-regulated kinase (ERK). Using a mouse xenograft model, we showed that tumor growth was significantly suppressed in mice subcutaneously inoculated with TYRO3-knockdown PC cells compared with mice inoculated with control PC cells. Furthermore, TYRO3 expression was examined in PC tissues obtained from 106 patients who underwent pancreatic resection for invasive ductal carcinoma through immunohistochemical staining. TYRO3-positive patients had poor prognoses for overall survival and disease-specific survival compared with TYRO3-negative patients. Multivariate analysis revealed that TYRO3 expression is an independent prognostic factor for overall survival. Our study demonstrates the critical role of TYRO3 in PC progression through Akt and ERK activation and suggests TYRO3 as a novel promising target for therapeutic strategies against PC.


Assuntos
Neoplasias Pancreáticas/patologia , Receptores Proteína Tirosina Quinases/metabolismo , Idoso , Animais , Carcinogênese , Linhagem Celular Tumoral , Proliferação de Células , Progressão da Doença , Feminino , Técnicas de Silenciamento de Genes , Humanos , Estimativa de Kaplan-Meier , Sistema de Sinalização das MAP Quinases , Masculino , Camundongos , Pessoa de Meia-Idade , Invasividade Neoplásica/patologia , Estadiamento de Neoplasias , Pâncreas/patologia , Neoplasias Pancreáticas/mortalidade , Fosforilação , Prognóstico , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Interferente Pequeno/metabolismo , Receptores Proteína Tirosina Quinases/genética , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...