Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
Cancers (Basel) ; 16(11)2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38893259

RESUMO

Lung squamous cell carcinoma (LSCC) is refractory to various therapies for non-small cell cancer; therefore, new therapeutic approaches are required to improve the prognosis of LSCC. Although immunotherapies targeting B7 family molecules were explored as treatments for several cancer types, the expression and significance of B7-H3 in the tumor microenvironment (TME) and its relationship with other immune checkpoint molecules have not yet been investigated in detail. We used high-throughput quantitative multiplex immunohistochemistry to examine B7-H3 expression in the TME. We investigated the relationship between B7-H3 expression and prognosis as well as changes in the TME with B7-H3 expression using 110 surgically resected pathological specimens retrospectively. We examined the correlation between B7-H3 and programmed cell death-ligand 1 (PD-L1) expression in single cells. High B7-H3 expression in tumor cells was associated with a better prognosis and a significant increase in the number of CD163+PD-L1+ macrophages. Quantitative analysis revealed that there is a positive correlation between B7-H3 and PD-L1 expression in tumor and stromal cells, as well as in intratumoral tumor-infiltrating lymphocytes and tumor-associated macrophages in the same cells. CD68+, CD163+, and CK+ cells with PD-L1+ phenotypes had higher B7-H3 expression compared to PD-L1- cells. Our findings demonstrate a correlation between B7-H3 and PD-L1 expression in the same cells, indicating that therapies targeting B7-H3 could provide additional efficacy in patients refractory to PD-L1-targeting therapies.

2.
Lab Invest ; 104(4): 102027, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38311062

RESUMO

Diffuse large B-cell lymphoma (DLBCL) is the most common non-Hodgkin lymphoma. New therapeutic strategies are needed for the treatment of refractory DLBCL. 4-Hydroxy-2-nonenal (4-HNE) is a cytotoxic lipid peroxidation marker, which alters intracellular signaling and induces genetic mutations. Lipid peroxidation is associated with nonapoptotic cell death, called ferroptosis. However, the relationship between 4-HNE accumulation and feroptotic regulators in DLBCL has not been fully evaluated. Here, we aimed to evaluate the accumulation of lipid peroxide and the expression of ferroptosis suppressor protein 1 (FSP1) in DLBCL using immunohistochemistry. We found a significant increase in the expression of FSP1 in cases with nuclear 4-HNE accumulation (P = .021). Both nuclear and cytoplasmic 4-HNE accumulation and FSP1 positivity were independent predictors of worse prognosis. In vitro exposure to 4-HNE resulted in its concentration- and time-dependent intracellular accumulation and increased expression of FSP1. Furthermore, short-term (0.25 and 1.0 µM) or long-term (0.25 µM) exposure to 4-HNE induced resistance to not only apoptosis but also ferroptosis. Taken together, regulation of FSP1 through 4-HNE accumulation may attenuate resistance to cell death in treatment-resistant DLBCL and might help develop novel therapeutic strategies for refractory DLBCL.


Assuntos
Aldeídos , Ferroptose , Linfoma Difuso de Grandes Células B , Humanos , Ferroptose/genética , Apoptose , Morte Celular , Linfoma Difuso de Grandes Células B/genética
3.
Hypertension ; 81(2): 361-371, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38095094

RESUMO

BACKGROUND: Recent advances in omics techniques have allowed detailed genetic characterization of aldosterone-producing adenoma (APA). The pathogenesis of APA is characterized by tumorigenesis-associated aldosterone synthesis. The pathophysiological intricacies of APAs have not yet been elucidated at the level of individual cells. Therefore, a single-cell level analysis is speculated to be valuable in studying the differentiation process of APA. METHODS: We conducted single-nucleus RNA sequencing of APAs with KCNJ5 mutation and nonfunctional adenomas obtained from 3 and 2 patients, respectively. RESULTS: The single-nucleus RNA sequencing revealed the intratumoral heterogeneity of APA and identified cell populations consisting of a shared cluster of nonfunctional adenoma and APA. In addition, we extracted 2 cell fates in APA and obtained a cell population specialized in aldosterone synthesis. Genes related to ribosomes and neurodegenerative diseases were upregulated in 1 of these fates, whereas those related to the regulation of glycolysis were upregulated in the other fate. Furthermore, the total RNA reads in the nucleus were higher in hormonally activated clusters, indicating a marked activation of transcription per cell. CONCLUSIONS: The single-nucleus RNA sequencing revealed intratumoral heterogeneity of APA with KCNJ5 mutation. The observation of 2 cell fates in KCNJ5-mutated APAs provides the postulation that a heterogeneous process of cellular differentiation was implicated in the pathophysiological mechanisms underlying APA tumors.


Assuntos
Adenoma , Neoplasias do Córtex Suprarrenal , Adenoma Adrenocortical , Hiperaldosteronismo , Humanos , Aldosterona , Adenoma Adrenocortical/genética , Adenoma Adrenocortical/patologia , Adenoma/genética , Adenoma/patologia , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/genética , Mutação , Neoplasias do Córtex Suprarrenal/genética , Hiperaldosteronismo/genética
4.
Gene ; 893: 147916, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-37866661

RESUMO

Pancreatic neuroendocrine carcinoma (NEC) and mixed neuroendocrine-non-neuroendocrine neoplasm (MiNEN) are rare pancreatic malignant tumors, and comprehensive gene analyses are scarce. In this study, six NECs and six MiNENs were collected, immunohistochemistry for synaptophysin, chromogranin A, INSM1, Ki-67, and Rb was conducted, and KRAS mutational status was examined. Among these cases, comprehensive gene expression analysis of oncogene pathways using nCounter® were performed with six NECs and four MiNENs, and those data were compared with that of three pancreatic ductal adenocarcinomas (PDACs), with that of three normal pancreatic ducts, and with each other. By dividing NEC and MiNEN cases into KRAS-mutated group and KRAS-wild group, the difference of clinicopathological data and gene expression profiling data were examined between the two groups. Compared to the data of normal pancreatic epithelium, all 13 cancer-related pathways were upregulated in PDAC, MiNEN, and NEC group with more upregulation in this order. Compared to the data of PDAC, genes of DNA Damage repair pathway was most upregulated both in NECs and MiNENs. Regarding the difference between KRAS-mutated and KRAS-wild groups, several genes were differentially expressed between the two, where MMP7 was the upregulated gene with highest p-value and NKD1 was the downregulated gene with highest p-value in KRAS-mutated group. From the extent of upregulation of 13 pathways, MiNEN was considered more progressed stage than PDAC, and NEC was considered more progressed than MiNEN. From the comparison of KRAS-mutated and KRAS-wild NECs and MiNENs, several differentially expressed genes were identified in this study.


Assuntos
Carcinoma Neuroendócrino , Tumores Neuroendócrinos , Neoplasias Pancreáticas , Humanos , Proteínas Proto-Oncogênicas p21(ras)/genética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Carcinoma Neuroendócrino/genética , Carcinoma Neuroendócrino/patologia , Perfilação da Expressão Gênica , Tumores Neuroendócrinos/genética , Tumores Neuroendócrinos/patologia , Proteínas Repressoras/genética
5.
Biomedicines ; 11(8)2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37626774

RESUMO

Accumulation of 4-hydroxynonenal (4-HNE), a marker of lipid peroxidation, has various favorable and unfavorable effects on cancer cells; however, the clinicopathological significance of its accumulation in hepatocellular carcinoma (HCC) and its metabolic pathway remain unknown. This study analyzed 4-HNE accumulation and its clinicopathological significance in HCC. Of the 221 cases, 160 showed relatively low accumulation of 4-HNE in HCC tissues, which was an independent prognostic predictor. No correlation was found between 4-HNE accumulation and the expression of the antioxidant enzymes glutathione peroxidase 4, ferroptosis suppressor protein 1, and guanosine triphosphate cyclohydrolase 1. Therefore, we hypothesized that 4-HNE metabolism is up-regulated in HCC. A database search was focused on the transcriptional regulation of aldo-keto reductases, alcohol dehydrogenases, and glutathione-S-transferases, which are the metabolic enzymes of 4-HNE, and seven candidate transcription factor genes were selected. Among the candidate genes, the knockdown of SWI/SNF-related, matrix-associated, actin-dependent regulator of chromatin, subfamily a, member 4 (SMARCA4) increased 4-HNE accumulation. Immunohistochemical analysis revealed an inverse correlation between 4-HNE accumulation and SMARCA4 expression. These results suggest that SMARCA4 regulates 4-HNE metabolism in HCC. Therefore, targeting SMARCA4 provides a basis for a new therapeutic strategy for HCC via 4-HNE accumulation and increased cytotoxicity.

6.
Commun Biol ; 6(1): 582, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37264057

RESUMO

Comprehensive screenings to clarify indirect cell-cell interactions, such as those in the tumor microenvironment, especially comprehensive assessments of supporting cells' effects, are challenging. Therefore, in this study, indirect CRISPR screening for drug resistance with cell-cell interactions was invented. The photoconvertible fluorescent protein Dendra2 was inducted to supporting cells and explored the drug resistance responsible factors of supporting cells with CRISPR screenings. Random mutated supporting cells co-cultured with leukemic cells induced drug resistance with cell-cell interactions. Supporting cells responsible for drug resistance were isolated with green-to-red photoconversion, and 39 candidate genes were identified. Knocking out C9orf89, MAGI2, MLPH, or RHBDD2 in supporting cells reduced the ratio of apoptosis of cancer cells. In addition, the low expression of RHBDD2 in supporting cells, specifically fibroblasts, of clinical pancreatic cancer showed a shortened prognosis, and a negative correlation with CXCL12 was observed. Indirect CRISPR screening was established to isolate the responsible elements of cell-cell interactions. This screening method could reveal unknown mechanisms in all kinds of cell-cell interactions by revealing live phenotype-inducible cells, and it could be a platform for discovering new targets of drugs for conventional chemotherapies.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Proteínas , Comunicação Celular/genética , Resistência a Medicamentos
9.
Int J Mol Sci ; 23(21)2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36362023

RESUMO

Tumor-associated macrophages (TAMs) and abnormalities in cancer cells affect cancer progression and response to therapy. TAMs are a major component of the tumor microenvironment (TME) in breast cancer, with their invasion affecting clinical outcomes. Programmed death-ligand 1 (PD-L1), a target of immune checkpoint inhibitors, acts as a suppressive signal for the surrounding immune system; however, its expression and effect on TAMs and the clinical outcome in breast cancer are unknown. In this study, we used high-throughput multiple immunohistochemistry to spatially and quantitatively analyze TAMs. We subjected 81 breast cancer specimens to immunostaining for CD68, CD163, PD-1, PD-L1, CD20, and pan-CK. In both stromal and intratumoral areas, the triple-negative subtype had significantly more CD68/CD163, CD68/PD-L1, and CD163/PD-L1 double-positive cells than the estrogen receptor (ER)/progesterone receptor (PR) subtype. Interestingly, a higher number of CD68+/PD-L1+/CK-/CD163- TAMs in the intratumoral area was correlated with a favorable recurrence rate (p = 0.048). These findings indicated that the specific subpopulation and localization of TAMs in the TME affect clinical outcomes in breast cancer.


Assuntos
Antígeno B7-H1 , Neoplasias de Mama Triplo Negativas , Macrófagos Associados a Tumor , Humanos , Antígeno B7-H1/metabolismo , Macrófagos/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Microambiente Tumoral , Macrófagos Associados a Tumor/citologia , Biomarcadores Tumorais
10.
Biology (Basel) ; 11(11)2022 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-36358254

RESUMO

Mutations in NRAS constitutively activate cell proliferation signaling in malignant neoplasms, such as leukemia and melanoma, and the clarification of comprehensive downstream genes of NRAS might lead to the control of cell-proliferative signals of NRAS-driven cancers. We previously established that NRAS expression and proliferative activity can be controlled with doxycycline and named as THP-1 B11. Using a CRISPR activation library on THP-1 B11 cells with the NRAS-off state, survival clones were harvested, and 21 candidate genes were identified. By inducting each candidate guide RNA with the CRISPR activation system, DOHH, HIST1H2AC, KRT32, and TAF6 showed higher cell-proliferative activity. The expression of DOHH, HIST1H2AC, and TAF6 was definitely upregulated with NRAS expression. Furthermore, MEK inhibitors resulted in the decreased expression of DOHH, HIST1H2AC, and TAF6 proteins in parental THP-1 cells. The knockdown of DOHH, HIST1H2AC, and TAF6 was found to reduce proliferation in THP-1 cells, indicating that they are involved in the downstream proliferation of NRAS. These molecules are expected to be new therapeutic targets for NRAS-mutant leukemia cells.

11.
Bioengineering (Basel) ; 9(10)2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36290460

RESUMO

Hematopoiesis is maintained by the interaction of hematopoietic stem cells (HSCs) and bone marrow mesenchymal stem cells (MSCs) in bone marrow microenvironments, called niches. Certain genetic mutations in MSCs, not HSCs, provoke some hematopoietic neoplasms, such as myelodysplastic syndrome. An in vivo bone marrow niche model using human MSC cell lines with specific genetic mutations and bone scaffolds is necessary to elucidate these interactions and the disease onset. We focused on decellularized bone (DCB) as a useful bone scaffold and attempted to induce human MSCs (UE7T-9 cells) into the DCB. Using the CRISPR activation library, we identified SHC4 upregulation as a candidate factor, with the SHC4 overexpression in UE7T-9 cells activating their migratory ability and upregulating genes to promote hematopoietic cell migration. This is the first study to apply the CRISPR library to engraft cells into decellularized biomaterials. SHC4 overexpression is essential for engrafting UE7T-9 cells into DCB, and it might be the first step toward creating an in vivo human-mouse hybrid bone marrow niche model.

12.
Front Oncol ; 12: 901591, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36132149

RESUMO

In breast cancer (BC), the development of cancer immunotherapy including immune checkpoint inhibitors has progressed. Tumor infiltrating lymphocytes (TILs) is one of the important factors for an immune response between tumor cells and immune cells in the tumor microenvironment, and the presence of TILs has been identified as predictors of response to chemotherapy. However, because complex mechanisms underlies the crosstalk between immune cells and cancer cells, the relationship between immune profiles in the tumor microenvironment and the efficacy of the immune checkpoint blocked has been unclear. Moreover, in many cases of breast cancer, the quantitative analysis of TILs and immuno-modification markers in a single tissue section are not studied. Therefore, we quantified detailed subsets of tumor infiltrating lymphocytes (TILs) from BC tissues and compared among BC subtypes. The TILs of BC tissues from 86 patients were classified using multiplex immunohistochemistry and an artificial intelligence-based analysis system based on T-cell subset markers, immunomodification markers, and the localization of TILs. The levels of CD4/PD1 and CD8/PD1 double-positive stromal TILs were significantly lower in the HER2- BC subtype (p <0.01 and p <0.05, respectively). In triple-negative breast cancer (TNBC), single marker-positive intratumoral TILs did not affect prognosis, however CD4/PDL1, CD8/PD1, and CD8/PDL1 double-positive TILs were significantly associated with TNBC recurrence (p<0.05, p<0.01, and p<0.001, respectively). TIL profiles differed among different BC subtypes, suggesting that the localization of TILs and their tumor-specific subsets influence the BC microenvironment.

13.
Mol Cancer Res ; 20(11): 1646-1658, 2022 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-35900472

RESUMO

NRAS proteins are central regulators of proliferation, survival, and self-renewal in leukemia. Previous work demonstrated that the effects of oncogenic NRAS in mediating proliferation and self-renewal are mutually exclusive within leukemia subpopulations and that levels of oncogenic NRAS vary between highly proliferative and self-renewing leukemia subpopulations. These findings suggest that NRAS activity levels may be important determinants of leukemic behavior. To define how oncogenic NRAS levels affect these functions, we genetically engineered an acute myeloid leukemia (AML) cell line, THP-1, to express variable levels of NRASG12V. We replaced the endogenous NRASG12D gene with a tetracycline-inducible and dose-responsive NRASG12V transgene. Cells lacking NRASG12V oncoprotein were cell-cycle arrested. Intermediate levels of NRASG12V induced maximal proliferation; higher levels led to attenuated proliferation, increased G1 arrest, senescence markers, and maximal self-renewal capacity. Higher levels of the oncoprotein also induced self-renewal and mitochondrial genes. We used mass cytometry (CyTOF) to define the downstream signaling events that mediate these differential effects. Not surprisingly, we found that the levels of such canonical RAS-effectors as pERK and p4EBP1 correlated with NRASG12V levels. ß-Catenin, a mediator of self-renewal, also correlated with NRASG12V levels. These signaling intermediates may mediate the differential effects of NRASG12V in leukemia biology. Together, these data reveal that oncogenic NRAS levels are important determinants of leukemic behavior explaining heterogeneity in phenotypes within a clone. This system provides a new model to study RAS oncogene addiction and RAS-induced self-renewal in AML. IMPLICATIONS: Different levels of activated NRAS may exert distinct effects on proliferation and self-renewal.


Assuntos
Leucemia Mieloide Aguda , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Oncogenes , Proteínas Oncogênicas/genética , Proliferação de Células , Linhagem Celular
14.
Int J Mol Sci ; 23(14)2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35887071

RESUMO

MYC is a major oncogene that plays an important role in cell proliferation in human cancers. Therefore, the mechanism behind MYC regulation is a viable therapeutic target for the treatment of cancer. Comprehensive and efficient screening of MYC regulators is needed, and we had previously established a promoter screening system using fluorescent proteins and the CRISPR library. For the efficient identification of candidate genes, a database was used, for which mRNA expression was correlated with MYC using datasets featuring "Similar" and "Not exactly similar" contexts. INTS14 and ERI2 were identified using datasets featuring the "Similar" context group, and INTS14 and ERI2 were capable of enhancing MYC promoter activity. In further database analysis of human cancers, a higher expression of MYC mRNA was observed in the INTS14 mRNA high-expressing prostate and liver cancers. The knockdown of INTS14 in prostate cell lines resulted in decreased MYC mRNA and protein expression and also induced G0/1 arrest. This study confirmed that CRISPR screening combined with context-matched database screening is effective in identifying genes that regulate the MYC promoter. This method can be applied to other genes and is expected to be useful in identifying the regulators of other proto-oncogenes.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Neoplasias Hepáticas , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Hepáticas/genética , Masculino , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proto-Oncogenes , RNA Mensageiro/genética
15.
J Stroke Cerebrovasc Dis ; 31(8): 106593, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35696736

RESUMO

BACKGROUND: Postoperative cerebral embolic stroke is a serious complication of pulmonary lobectomy, occurring in 1.1% of patients undergoing lobectomy through video-assisted thoracoscopic surgery (VATS). The mechanism of this complication is thought to be embolic stroke caused by thrombus formed due to stagnation in the pulmonary vein stump after VATS lobectomy. There have been few reports demonstrating the utility of endovascular treatment (EVT) for cerebral embolic stroke after VATS lobectomy. CASE DESCRIPTION: In our case series, cerebral embolic stroke occurred after VATS pulmonary lobectomy for lung cancer, including the left upper lobe in three cases and the right lobe in one. The median duration of ischemic stroke after VATS was 4.5 days (interquartile range, 2-9 days). The median time from stroke onset to puncture was 130 min. Successful recanalization was achieved in all cases, and two patients achieved favorable clinical outcomes (modified Rankin scale, 0-2). CONCLUSION: We report a case series of four patients who underwent EVT for acute embolic stroke after VATS lobectomy for lung cancer. EVT is considered a reasonable and feasible therapeutic option for this condition.


Assuntos
AVC Embólico , AVC Isquêmico , Neoplasias Pulmonares , Acidente Vascular Cerebral , Humanos , Neoplasias Pulmonares/complicações , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/cirurgia , Pneumonectomia/efeitos adversos , Acidente Vascular Cerebral/diagnóstico por imagem , Acidente Vascular Cerebral/etiologia , Acidente Vascular Cerebral/terapia , Cirurgia Torácica Vídeoassistida/efeitos adversos
16.
Lung Cancer ; 165: 82-90, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35101731

RESUMO

OBJECTIVES: Lung squamous cell carcinoma (LSCC) exhibits poor response to treatment compared with other lung cancer subtypes, resulting in worse prognosis. Therefore, new therapeutic strategies are required for advanced LSCC. Ferroptosis is a recently discovered nonapoptotic cell death caused by intracellular lipid peroxidation that can bring about effective cell death in cancer cells resistant to apoptosis. Hence, ferroptosis is a potential therapeutic strategy for refractory cancer. MATERIALS AND METHODS: In this study, we performed clinicopathological and molecular analyses on tumor specimens from 270 patients with squamous cell lung cancer, focusing on the expression of glutathione peroxidase 4 (GPX4) and ferroptosis suppressor protein 1 (FSP1), which are known to be key regulators of ferroptosis, and the accumulation of 4-hydroxynoneral (4-HNE), a lipid peroxidation marker. RESULTS: Immunohistochemistry revealed that patients with low 4-HNE accumulation and low levels of GPX4 or FSP1 had significantly worse prognoses than other patients (P = 0.001). This stratification was an independent prognostic predictor (P = 0.003). A dramatic cell death synergistic effect was observed on LSCC-derived LK-2 and EBC1 cells treated with GPX4 and FSP1 inhibitors. This effect was completely inhibited by treatment with the ferroptosis inhibitor. Notably, this was not the case in LK-2 cells treated with the apoptosis inhibitor, and in these cells, ferroptosis was induced. CONCLUSION: Ferroptosis regulators GPX4 and FSP1 are associated with lung squamous cell cancer cancer's prognosis. We present the clinicopathological and molecular basis of novel therapeutic strategies for refractory LSCC.

17.
Pathology ; 54(3): 286-293, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34531036

RESUMO

In haematological malignancies, such as malignant lymphoma, reprogramming of fatty acid metabolism favours tumour cell survival and drug resistance. Hydroxyacyl-CoA dehydrogenase trifunctional multienzyme complex subunit alpha (HADHA), an enzyme involved in fatty acid beta-oxidation (FAO), is overexpressed in high-grade lymphoma and is a predictor of poor prognosis in diffuse large B-cell lymphoma (DLBCL). HADHB forms a heterodimer with HADHA and functions as an FAO enzyme together with HADHA; however, the relevance of its expression in malignant lymphoma is unknown. In this study, we investigated the roles and antitumour effects of HADHB expression in malignant lymphoma. Immunohistochemical analysis showed that HADHB was frequently overexpressed in the high-grade lymphoma subtype. HADHB overexpression was observed in 68% (87/128) of DLBCL cases and was an independent predictor of poor prognosis (p=0.001). In vitro analysis demonstrated that HADHB knockdown suppressed cell proliferation in LCL-K and MD901 cells (p<0.05). Additionally, treatment with the FAO inhibitor, ranolazine, increased cell death in control cells compared with that in HADHB knockdown LCL-K and MD901 cells (p<0.01). Cell death was also suppressed by the ferroptosis inhibitor, ferrosatin-1, in LCL-K and MD901 cells (p<0.05). Collectively, these findings provide basic evidence for the development of new cell death-based therapies for refractory malignant lymphoma. We plan to perform prospective studies and preclinical studies using animal models to confirm these results.


Assuntos
Linfoma Difuso de Grandes Células B , Subunidade beta da Proteína Mitocondrial Trifuncional , Animais , Ácidos Graxos/metabolismo , Humanos , Linfoma Difuso de Grandes Células B/diagnóstico , Subunidade beta da Proteína Mitocondrial Trifuncional/metabolismo , Prognóstico , Estudos Prospectivos
18.
Int J Mol Sci ; 22(22)2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34830205

RESUMO

CRISPR/Cas has emerged as an excelle nt gene-editing technology and is used worldwide for research. The CRISPR library is an ideal tool for identifying essential genes and synthetic lethality targeted for cancer therapies in human cancers. Synthetic lethality is defined as multiple genetic abnormalities that, when present individually, do not affect function or survival, but when present together, are lethal. Recently, many CRISPR libraries are available, and the latest libraries are more accurate and can be applied to few cells. However, it is easier to efficiently search for cancer targets with their own screenings by effectively using databases of CRISPR screenings, such as Depmap portal, PICKLES (Pooled In-Vitro CRISPR Knockout Library Essentiality Screens), iCSDB, Project Score database, and CRISP-view. This review will suggest recent optimal CRISPR libraries and effective databases for Novel Approaches in the Discovery and Design of Targeted Therapies.


Assuntos
Sistemas CRISPR-Cas , Bases de Dados Genéticas , Descoberta de Drogas/métodos , Detecção Precoce de Câncer/métodos , Terapia de Alvo Molecular/métodos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Biomarcadores Tumorais/genética , Edição de Genes/métodos , Biblioteca Gênica , Genes Essenciais , Genoma Humano , Humanos , RNA Guia de Cinetoplastídeos/genética , Mutações Sintéticas Letais
19.
Cancer Sci ; 112(12): 4920-4930, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34653294

RESUMO

BLNK (BASH/SLP-65) encodes an adaptor protein that plays an important role in B-cell receptor (BCR) signaling. Loss-of-function mutations in this gene are observed in human pre-B acute lymphoblastic leukemia (ALL), and a subset of Blnk knock-out (KO) mice develop pre-B-ALL. To understand the molecular mechanism of the Blnk mutation-associated pre-B-ALL development, retroviral tagging was applied to KO mice using the Moloney murine leukemia virus (MoMLV). The Blnk mutation that significantly accelerated the onset of MoMLV-induced leukemia and increased the incidence of pre-B-ALL Cebpb was identified as a frequent site of retroviral integration, suggesting that its upregulation cooperates with Blnk mutations. Transgenic expression of the liver-enriched activator protein (LAP) isoform of Cebpb reduced the number of mature B-lymphocytes in the bone marrow and inhibited differentiation at the pre-BI stage. Furthermore, LAP expression significantly accelerated leukemogenesis in Blnk KO mice and alone acted as a B-cell oncogene. Furthermore, an inverse relationship between BLNK and C/EBPß expression was also noted in human pre-B-ALL cases, and the high level of CEBPB expression was associated with short survival periods in patients with BLNK-downregulated pre-B-ALL. These results indicate the association between the C/EBPß transcriptional network and BCR signaling in pre-B-ALL development and leukemogenesis. This study gives insight into ALL progression and suggests that the BCR/C/EBPß pathway can be a therapeutic target.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Proteína beta Intensificadora de Ligação a CCAAT/genética , Vírus da Leucemia Murina de Moloney/fisiologia , Mutação , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Animais , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Perfilação da Expressão Gênica , Regulação Leucêmica da Expressão Gênica , Humanos , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Análise de Sequência com Séries de Oligonucleotídeos , Leucemia-Linfoma Linfoblástico de Células Precursoras B/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras B/virologia , Regulação para Cima , Integração Viral
20.
Blood Adv ; 5(7): 1805-1815, 2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33787860

RESUMO

Systemic chronic active Epstein-Barr virus (EBV; sCAEBV) infection, T- and natural killer (NK)-cell type (sCAEBV), is a fatal disorder accompanied by persisting inflammation harboring clonal proliferation of EBV-infected T or NK cells. Today's chemotherapy is insufficient to resolve disease activity and to rid infected cells of sCAEBV. The currently established treatment strategy for eradicating infected cells is allogeneic hematopoietic stem cell transplantation. In this study, we focused on the effects of proteasome inhibitor bortezomib on the disease. Bortezomib suppressed survival and induced apoptosis of EBV+ T- or NK-cell lines and peripheral mononuclear cells containing EBV-infected T or NK cells of sCAEBV patients. Bortezomib enhanced binding immunoglobulin protein/78-kDa glucose-regulated protein (Bip/GRP78) expression induced by endoplasmic reticulum stress and activated apoptosis-promoting molecules JNK and p38 in the cell lines. Bortezomib suppressed the activation of survival-promoting molecule NF-κB, which was constitutively activated in EBV+ T- or NK-cell lines. Furthermore, quantitative reverse transcription-polymerase chain reaction demonstrated that bortezomib suppressed messenger RNA expression of proinflammatory cytokines tumor necrosis factor α (TNF-α) and interferon γ (IFN-γ) in EBV+ T or NK cells from the patients. Finally, we examined the effects of bortezomib using xenograft models of sCAEBV generated by IV injection of patients' cells. The intraperitoneal administration of bortezomib significantly reduced EBV-DNA load in peripheral blood and the infiltration of EBV-infected cells in the models' livers. Moreover, the serum concentration of TNF-α and IFN-γ decreased after bortezomib treatment to the models. Our findings will be translated into the treatment of sCAEBV not only to reduce the number of tumor cells but also to suppress inflammation.


Assuntos
Antineoplásicos , Infecções por Vírus Epstein-Barr , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Bortezomib/farmacologia , Bortezomib/uso terapêutico , Chaperona BiP do Retículo Endoplasmático , Infecções por Vírus Epstein-Barr/tratamento farmacológico , Herpesvirus Humano 4 , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...