Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Circ Res ; 135(1): 41-56, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38712557

RESUMO

BACKGROUND: Inflammation is pathogenically implicated in pulmonary arterial hypertension; however, it has not been adequately targeted therapeutically. We investigated whether neuromodulation of an anti-inflammatory neuroimmune pathway involving the splenic nerve using noninvasive, focused ultrasound stimulation of the spleen (sFUS) can improve experimental pulmonary hypertension. METHODS: Pulmonary hypertension was induced in rats either by Sugen 5416 (20 mg/kg SQ) injection, followed by 21 (or 35) days of hypoxia (sugen/hypoxia model), or by monocrotaline (60 mg/kg IP) injection (monocrotaline model). Animals were randomized to receive either 12-minute-long sessions of sFUS daily or sham stimulation for 14 days. Catheterizations, echocardiography, indices of autonomic function, lung and heart histology and immunohistochemistry, spleen flow cytometry, and lung single-cell RNA sequencing were performed after treatment to assess the effects of sFUS. RESULTS: Splenic denervation right before induction of pulmonary hypertension results in a more severe disease phenotype. In both sugen/hypoxia and monocrotaline models, sFUS treatment reduces right ventricular systolic pressure by 25% to 30% compared with sham treatment, without affecting systemic pressure, and improves right ventricular function and autonomic indices. sFUS reduces wall thickness, apoptosis, and proliferation in small pulmonary arterioles, suppresses CD3+ and CD68+ cell infiltration in lungs and right ventricular fibrosis and hypertrophy and lowers BNP (brain natriuretic peptide). Beneficial effects persist for weeks after sFUS discontinuation and are more robust with early and longer treatment. Splenic denervation abolishes sFUS therapeutic benefits. sFUS partially normalizes CD68+ and CD8+ T-cell counts in the spleen and downregulates several inflammatory genes and pathways in nonclassical and classical monocytes and macrophages in the lung. Differentially expressed genes in those cell types are significantly enriched for human pulmonary arterial hypertension-associated genes. CONCLUSIONS: sFUS causes dose-dependent, sustained improvement of hemodynamic, autonomic, laboratory, and pathological manifestations in 2 models of experimental pulmonary hypertension. Mechanistically, sFUS normalizes immune cell populations in the spleen and downregulates inflammatory genes and pathways in the lung, many of which are relevant in human disease.


Assuntos
Hipertensão Pulmonar , Baço , Animais , Baço/metabolismo , Masculino , Ratos , Hipertensão Pulmonar/terapia , Hipertensão Pulmonar/metabolismo , Ratos Sprague-Dawley , Modelos Animais de Doenças , Ondas Ultrassônicas
2.
Sci Adv ; 10(17): eadn3760, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38669336

RESUMO

Acetylcholine is produced in the spleen in response to vagus nerve activation; however, the effects on antibody production have been largely unexplored. Here, we use a chronic vagus nerve stimulation (VNS) mouse model to study the effect of VNS on T-dependent B cell responses. We observed lower titers of high-affinity IgG and fewer antigen-specific germinal center (GC) B cells. GC B cells from chronic VNS mice exhibited altered mRNA and protein expression suggesting increased apoptosis and impaired plasma cell differentiation. Follicular dendritic cell (FDC) cluster dispersal and altered gene expression suggested poor function. The absence of acetylcholine-producing CD4+ T cells diminished these alterations. In vitro studies revealed that α7 and α9 nicotinic acetylcholine receptors (nAChRs) directly regulated B cell production of TNF, a cytokine crucial to FDC clustering. α4 nAChR inhibited coligation of CD19 to the B cell receptor, presumably decreasing B cell survival. Thus, VNS-induced GC impairment can be attributed to distinct effects of nAChRs on B cells.


Assuntos
Linfócitos B , Centro Germinativo , Receptores Nicotínicos , Estimulação do Nervo Vago , Receptor Nicotínico de Acetilcolina alfa7 , Animais , Centro Germinativo/metabolismo , Centro Germinativo/imunologia , Estimulação do Nervo Vago/métodos , Linfócitos B/metabolismo , Linfócitos B/imunologia , Camundongos , Receptores Nicotínicos/metabolismo , Receptores Nicotínicos/genética , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Receptor Nicotínico de Acetilcolina alfa7/genética , Células Dendríticas Foliculares/metabolismo , Células Dendríticas Foliculares/imunologia , Receptores Colinérgicos/metabolismo , Receptores Colinérgicos/imunologia , Receptores de Antígenos de Linfócitos B/metabolismo , Diferenciação Celular , Camundongos Endogâmicos C57BL , Imunoglobulina G/imunologia , Nervo Vago/metabolismo , Nervo Vago/fisiologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/imunologia
3.
J Clin Invest ; 132(17)2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35819855

RESUMO

FcγRIIB is an inhibitory receptor expressed throughout B cell development. Diminished expression or function is associated with lupus in mice and humans, in particular through an effect on autoantibody production and plasma cell (PC) differentiation. Here, we analyzed the effect of B cell-intrinsic FcγRIIB expression on B cell activation and PC differentiation. Loss of FcγRIIB on B cells in Fcgr2b-conditional KO (Fcgr2b-cKO) mice led to a spontaneous increase in autoantibody titers. This increase was most striking for IgG3, suggestive of increased extrafollicular responses. Marginal zone (MZ) B cells had the highest expression of FcγRIIB in both mice and humans. This high expression of FcγRIIB was linked to increased MZ B cell activation, Erk phosphorylation, and calcium flux in the absence of FcγRIIB triggering. We observed a marked increase in IgG3+ PCs and B cells during extrafollicular PC responses in Fcgr2b-cKO mice. The increased IgG3 response following immunization of Fcgr2b-cKO mice was lost in MZ-deficient Notch2 Fcgr2b-double KO mice. Importantly, patients with systemic lupus erythematosus (SLE) had a decrease in FcγRIIB expression that was strongest in MZ B cells. Thus, we present a model in which high FcγRIIB expression in MZ B cells prevented their hyperactivation and ensuing autoimmunity.


Assuntos
Lúpus Eritematoso Sistêmico , Receptores de IgG , Animais , Autoimunidade , Linfócitos B , Humanos , Imunoglobulina G/genética , Imunoglobulina G/metabolismo , Lúpus Eritematoso Sistêmico/genética , Ativação Linfocitária , Camundongos , Receptores de IgG/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...