Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 224, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172092

RESUMO

Researchers in many fields use networks to represent interactions between entities in complex systems. To study the large-scale behavior of complex systems, it is useful to examine mesoscale structures in networks as building blocks that influence such behavior. In this paper, we present an approach to describe low-rank mesoscale structures in networks. We find that many real-world networks possess a small set of latent motifs that effectively approximate most subgraphs at a fixed mesoscale. Such low-rank mesoscale structures allow one to reconstruct networks by approximating subgraphs of a network using combinations of latent motifs. Employing subgraph sampling and nonnegative matrix factorization enables the discovery of these latent motifs. The ability to encode and reconstruct networks using a small set of latent motifs has many applications in network analysis, including network comparison, network denoising, and edge inference.

2.
Phys Rev E ; 101(6-1): 062303, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32688568

RESUMO

We investigate a nonlinear version of coevolving voter models, in which node states and network structure update as a coupled stochastic process. Most prior work on coevolving voter models has focused on linear update rules with fixed and homogeneous rewiring and adopting probabilities. By contrast, in our nonlinear version, the probability that a node rewires or adopts is a function of how well it "fits in" with the nodes in its neighborhood. To explore this idea, we incorporate a local-survey parameter σ_{i} that encodes the fraction of neighbors of an updating node i that share its opinion state. In an update, with probability σ_{i}^{q} (for some nonlinearity parameter q), the updating node rewires; with complementary probability 1-σ_{i}^{q}, the updating node adopts a new opinion state. We study this mechanism using three rewiring schemes: after an updating node deletes one of its discordant edges, it then either (1) "rewires-to-random" by choosing a new neighbor in a random process; (2) "rewires-to-same" by choosing a new neighbor in a random process from nodes that share its state; or (3) "rewires-to-none" by not rewiring at all (akin to "unfriending" on social media). We compare our nonlinear coevolving voter model to several existing linear coevolving voter models on various network architectures. Relative to those models, we find in our model that initial network topology plays a larger role in the dynamics and that the choice of rewiring mechanism plays a smaller role. A particularly interesting feature of our model is that, under certain conditions, the opinion state that is held initially by a minority of the nodes can effectively spread to almost every node in a network if the minority nodes view themselves as the majority. In light of this observation, we relate our results to recent work on the majority illusion in social networks.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...