Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Ther ; 31(4): 1159-1166, 2023 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-36793209

RESUMO

The rapid development of CRISPR genome editing technology has provided the potential to treat genetic diseases effectively and precisely. However, efficient and safe delivery of genome editors to affected tissues remains a challenge. Here, we developed luminescent ABE (LumA), a luciferase reporter mouse model containing the R387X mutation (c.A1159T) in the luciferase gene located in the Rosa26 locus of the mouse genome. This mutation eliminates luciferase activity but can be restored upon A-to-G correction by SpCas9 adenine base editors (ABEs). The LumA mouse model was validated through intravenous injection of two FDA-approved lipid nanoparticle (LNP) formulations consisting of either MC3 or ALC-0315 ionizable cationic lipids, encapsulated with ABE mRNA and LucR387X-specific guide RNA (gRNA). Whole-body bioluminescence live imaging showed consistent restoration of luminescence lasting up to 4 months in treated mice. Compared with mice carrying the wild-type luciferase gene, the ALC-0315 and MC3 LNP groups showed 83.5% ± 17.5% and 8.4% ± 4.3% restoration of luciferase activity in the liver, respectively, as measured by tissue luciferase assays. These results demonstrated successful development of a luciferase reporter mouse model that can be used to evaluate the efficacy and safety of different genome editors, LNP formulations, and tissue-specific delivery systems for optimizing genome editing therapeutics.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Camundongos , Animais , Edição de Genes/métodos , Adenina , Modelos Animais de Doenças , Luciferases/genética
2.
Langmuir ; 38(46): 14036-14043, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36367350

RESUMO

Nucleic acid therapeutics represent a major advance toward treating diseases at their root cause. However, nucleic acids are prone to degradation by serum endonucleases, clearance through the immune system, and rapid degradation in complex medium. To overcome these barriers, nucleic acids frequently include chemical modifications to improve stability or decrease immune responses. Lipid nanoparticles (LNPs) have enabled a dramatic reduction in the dose required to achieve a therapeutic effect by protecting these nucleic acids and improving their intracellular delivery. It has been assumed thus far that nonspecific ionic interactions drive LNP formation and chemical modifications to the nucleic acid backbone to confer improved stability do not impact LNP delivery in any way. Here, we demonstrate that these chemical modifications do impact LNP morphology substantially, and phosphorothioate modifications produce stronger interactions with ionizable amino lipids, resulting in enhanced entrapment. This work represents a major first step toward greater understanding of the interaction between the lipid components and nucleic acids within an LNP.


Assuntos
Nanopartículas , Ácidos Nucleicos , Lipossomos , RNA Interferente Pequeno
3.
ACS Omega ; 5(30): 18758-18765, 2020 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-32775877

RESUMO

The simple structural modification of replacing a terminal carboxylic acid with a primary amide group was found to lower the minimum gelation concentration (MGC), by at least an order of magnitude, for a series of N-lauroyl-l-amino acid phase-selective organogelators in decane. The amide-functionalized analogue N-lauroyl-l-alanine-CONH2 was demonstrated to gel a broad range of solvents from diesel to THF at MGCs of 2.5% w/v or less, as well as to produce gels with a higher thermal stability (ca. 30 °C) and enhanced mechanical properties (5 times increase in complex modulus), compared to the carboxylic acid analogue, N-lauroyl-l-alanine-COOH. These improved properties may be due to the additional hydrogen bonding in the primary amide analogue as revealed by SCXRD. Most significantly for this study, the introduction of the primary amide functionality enabled N-lauroyl-l-alanine-CONH2 to form a self-assembled fibrillar network in water. The aqueous network could then actively uptake and rapidly gel decane, diesel, and diluted bitumen ("dilbit") with MGCs of 2.5% w/v or less. This aqueous delivery method is advantageous for oil-remediation applications as no harmful carrier solvents are required and the gel can be easily separated from the water, allowing the oil to be recovered and the gelator recycled.

4.
J Org Chem ; 82(13): 6958-6967, 2017 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-28558466

RESUMO

A regioselective base-mediated cyclization of mono-N-acylpropargylguanidines is reported. A related Ag(I)-catalyzed hydroamination strategy was recently employed to yield N3-Cbz-protected ene-guanidines, which found utility in the synthesis of naamidine A. Herein, we report the base-catalyzed hydroamination of mono-N-acylpropargylguanidines, which proceeds with the opposite regiochemistry to deliver isomerized N2-acyl-2-aminoimidazoles with broad substrate scope, circumventing the problematic regiospecific acylation of free 2-aminoimidazoles.


Assuntos
Guanidinas/química , Ciclização , Estrutura Molecular , Análise Espectral/métodos , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...