Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bull Math Biol ; 77(1): 83-125, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25515029

RESUMO

A hybrid asymptotic-numerical method is formulated and implemented to accurately calculate the mean first passage time (MFPT) for the expected time needed for a predator to locate small patches of prey in a 2-D landscape. In our analysis, the movement of the predator can have both a random and a directed component, where the diffusivity of the predator is isotropic but possibly spatially heterogeneous. Our singular perturbation methodology, which is based on the assumption that the ratio [Formula: see text] of the radius of a typical prey patch to that of the overall landscape is asymptotically small, leads to the derivation of an algebraic system that determines the MFPT in terms of parameters characterizing the shapes of the small prey patches together with a certain Green's function, which in general must be computed numerically. The expected error in approximating the MFPT by our semi-analytical procedure is smaller than any power of [Formula: see text], so that our approximation of the MFPT is still rather accurate at only moderately small prey patch radii. Overall, our hybrid approach has the advantage of eliminating the difficulty with resolving small spatial scales in a full numerical treatment of the partial differential equation (PDE). Similar semi-analytical methods are also developed and implemented to accurately calculate related quantities such as the variance of the mean first passage time (VMFPT) and the splitting probability. Results for the MFPT, the VMFPT, and splitting probability obtained from our hybrid methodology are validated with corresponding results computed from full numerical simulations of the underlying PDEs.


Assuntos
Ecologia , Modelos Biológicos , Animais , Ecossistema , Cadeia Alimentar , Conceitos Matemáticos , Dinâmica Populacional , Probabilidade , Fatores de Tempo
2.
PLoS One ; 8(1): e54639, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23382931

RESUMO

Network models extend evolutionary game theory to settings with spatial or social structure and have provided key insights on the mechanisms underlying the evolution of cooperation. However, network models have also proven sensitive to seemingly small details of the model architecture. Here we investigate two popular biologically motivated models of evolution in finite populations: Death-Birth (DB) and Birth-Death (BD) processes. In both cases reproduction is proportional to fitness and death is random; the only difference is the order of the two events at each time step. Although superficially similar, under DB cooperation may be favoured in structured populations, while under BD it never is. This is especially troubling as natural populations do not follow a strict one birth then one death regimen (or vice versa); such constraints are introduced to make models more tractable. Whether structure can promote the evolution of cooperation should not hinge on a simplifying assumption. Here, we propose a mixed rule where in each time step DB is used with probability δ and BD is used with probability 1-δ. We derive the conditions for selection favouring cooperation under the mixed rule for all social dilemmas. We find that the only qualitatively different outcome occurs when using just BD (δ = 0). This case admits a natural interpretation in terms of kin competition counterbalancing the effect of kin selection. Finally we show that, for any mixed BD-DB update and under weak selection, cooperation is never inhibited by population structure for any social dilemma, including the Snowdrift Game.


Assuntos
Teoria dos Jogos , Modelos Biológicos , Algoritmos , Evolução Biológica , Simulação por Computador , Dinâmica Populacional , Reprodução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...