Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Theory Comput ; 20(1): 134-142, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38113195

RESUMO

We develop a local correlation variant of auxiliary-field quantum Monte Carlo (AFQMC) based on local natural orbitals (LNO-AFQMC). In LNO-AFQMC, independent AFQMC calculations are performed for each localized occupied orbital using a truncated set of tailored orbitals. Because the size of this space does not grow with the system size for a target accuracy, the method has linear scaling. Applying LNO-AFQMC to molecular problems containing a few hundred to a thousand orbitals, we demonstrate convergence of total energies with significantly reduced costs. The savings are more significant for larger systems and larger basis sets. However, even for our smallest system studied, we find that LNO-AFQMC is cheaper than canonical AFQMC, in contrast with many other reduced-scaling methods. Perhaps most significantly, we show that energy differences converge much more quickly than total energies, making the method ideal for applications in chemistry and material science. Our work paves the way for linear scaling AFQMC calculations of strongly correlated systems, which would have a transformative effect on ab initio quantum chemistry.

2.
J Chem Phys ; 159(18)2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37937933

RESUMO

We present a method for calculating first-order response properties in phaseless auxiliary field quantum Monte Carlo by applying automatic differentiation (AD). Biases and statistical efficiency of the resulting estimators are discussed. Our approach demonstrates that AD enables the calculation of reduced density matrices with the same computational cost scaling per sample as energy calculations, accompanied by a cost prefactor of less than four in our numerical calculations. We investigate the role of self-consistency and trial orbital choice in property calculations. We find that orbitals obtained using density functional theory perform well for the dipole moments of selected molecules compared to those optimized self-consistently.

3.
Chem Commun (Camb) ; 56(89): 13832-13835, 2020 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-33084637

RESUMO

Chemo- and site-specific modifications in oligonucleotides have wide applicability as mechanistic probes in chemical biology. However, methods that label specific sites in nucleic acids are scarce, especially for labeling DNA/RNA from biological or enzymatic sources rather than synthetic ones. Here we have employed a classical reaction, reductive amination, to selectively functionalize the N2-amine of guanosine and 2'-deoxyguanosine monophosphate (GMP/dGMP). This method specifically modifies guanine in DNA and RNA oligonucleotides, while leaving the other nucleobases unaffected. Using this approach, we have successfully incorporated a reactive handle chemoselectively into nucleic acids for further functionalization and downstream applications.


Assuntos
Aminas/química , Guanina/química , Oligonucleotídeos/química , Aminação , Conformação de Ácido Nucleico , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...