Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 13387, 2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37591973

RESUMO

As society becomes smarter, advanced optical sensing and imaging technologies utilizing visible and near-infrared regions have become increasingly prevalent. Wire-grid polarizers, which are available for broadband electromagnetic waves, are effective in improving the signal-to-noise ratio of such optical systems and enabling more advanced object detection and analysis. However, to be implemented in everyday products, low-cost manufacturing methods must be developed while maintaining high-performance optical functions. To meet these requirements, we conducted an analysis of the geometry of wire-grid polarizers, and designed and developed a wire-grid polarizer with a nano-triangular wave-shaped structure that can be fabricated using general-purpose manufacturing equipment. Once the mould is prepared, this polarizer can be fabricated via nanoimprinting and metal deposition with a normal angle or electroless plating processes. The polarizer fabricated through electroless Ni plating achieves a transmittance of 40%, which is approximately 1.4 times higher than that achieved in a previous study using electroless Ni plating on a rectangular structure with the same period. In addition, the polarizer fabricated through normal angle Al deposition operates over a wide range of wavelengths from visible light to near-infrared, and achieves a polarization extinction ratio of 24 dB at a wavelength of 550 nm and a high transmittance of 81%. High-performance polarizers can be obtained through normal-angle deposition using general-purpose equipment in contrast to the oblique-angle deposition method employed in the manufacture of conventional rectangular structure-based wire-grid polarizers, thereby contributing to cost reduction and improved manufacturability.

2.
Macromol Rapid Commun ; 44(15): e2300155, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37191110

RESUMO

A series of multiblock copolymers comprising a systematic combination of biomass-originated and biodegradable poly(butylene succinate) (PBS) and poly(2-pyrrolidone) (PA4) units is synthesized with various mean degrees of polymerization (mDP) of each unit. Despite the inherent immiscibility of PBS and PA4, multiblock structure allows to mix the two components in the solution-cast films from solution. The mechanical properties of the cast films are highly dependent on the mDP of each unit, as demonstrated by tensile tests. The film of the copolymer with the lowest mDP of each unit (PBS: 17, PA4: 10) is transparent and exhibits extremely high elongation at break (> 400%) and high tensile stress (39.5 MPa) with strain hardening. The films with 50% or higher crystallinity are brittle and opaque, while a decrease in crystallinity can result in higher elongation, as revealed by wide-angle X-ray diffraction measurements.


Assuntos
Poliésteres , Polímeros , Poliésteres/química , Polímeros/química , Butileno Glicóis/química
3.
Opt Express ; 30(25): 45583-45591, 2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36522961

RESUMO

In near-infrared systems for optical sensing and imaging technologies, an improved signal-to-noise ratio and more advanced object detection and analysis using polarizers are required. Such polarizers are limited, and broadband wire-grid polarizers are potential candidates. However, their high reflectivity and high cost limit their application. Herein, we fabricated a low-reflectivity wire-grid polarizer sheet that can be used in visible and near-infrared regions by a simple process using only nanoimprinting and nickel electroless plating; further, metal removal steps such as chemical mechanical polishing were not required. The results obtained by optimizing the structural shape of the mold and precisely controlling the thickness of the electroless plating confirmed that the polarizer could be used for visible and near-infrared light. Because the sheets can be manufactured using general-purpose equipment upon mold preparation, they can be employed in wide-ranging applications with small capital investment.

4.
Polymers (Basel) ; 13(4)2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33669695

RESUMO

We investigated the enhancement of the capillary effect in a plastic capillary tube using only a nanostructured surface. Since plastic is a hydrophobic material, the capillary effect does not emerge without an additional coating or plasma treatment process. Therefore, capillary effect enhancement by the nanostructure fabrication method is expected to reduce the cost and minimise the contamination produced in the human body. By combining a hydrophilic nylon resin and a nanostructure at the tip of the plastic pipette, we could confirm that the capillary effect was produced solely by the tube fabrication process. The produced capillary effect increased linearly with increasing nanostructure height when a standard solution with a surface tension of 70 mN·m-1 was used. Thus, we can conclude that including the plastic part with nanostructure can be useful for biomedical applications. In addition, we suggest that the proposed method is highly effective in controlling the wetting properties of plastic surfaces, compared to the typical coating or plasma treatment processes.

5.
Sci Rep ; 11(1): 2096, 2021 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-33483625

RESUMO

For the construction of next-generation optical products and systems, the evolution of polariser sheets is a necessary requirement. To this end, a low-reflective wire-grid polariser (WGP) sheet for the visible light region is demonstrated, the nanowires of which consist of a sintered body of silver nanoparticle ink. The nanowires are formed by a nanoprinting process using a thermal nanoimprint method and ink filling. This process makes it easier to achieve multiple wafer-scale productions without using sophisticated equipment compared to conventional WGP nanofabrication techniques, which typically employ lithography and elaborate etching processes. The optical characteristics are controlled by the shape of the printed nanowires. A WGP sheet with a luminous degree of polarisation of 99.0%, a total luminous transmittance of 13.6%, and a luminous reflectance of 3.6% is produced. Its low reflectance is achieved through the uneven surface derived from the sintered body of the nanoparticle ink, and the shape of the bottom of the nanowire is derived from the tip shape of the mould structure. Furthermore, the printed WGP sheet has the durability required for the manufacturing of curved products, including sunglasses. The optical structures made of nanoparticle ink using this nanoprinting process have the potential to significantly contribute to the development of fine-structured optical elements with unprecedented functionality.

6.
Opt Express ; 26(8): 10326-10338, 2018 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-29715971

RESUMO

For development of next-generation light control, a simple manufacturing technology to produce flexible metamaterials is a key component. Here, we report development of a printing method involving combination of a thermal nanoimprint method and a squeegeeing method, and demonstrate printed optical metamaterials made of commercially available ink consisting of silver nanoparticles. Optical evaluations of printed dipole resonators indicate dipole resonances corresponding to the structure lengths; these resonances are observed at wavelengths of 765-1346 nm. In particular, we report the important finding that, in metamaterials strongly affected by their constituent materials, a metamaterial structure made of the ink exhibits optical properties comparable to those produced by a vacuum deposition process.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...