Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Plant Physiol ; 195(2): 1333-1346, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38446745

RESUMO

Transposable elements (TEs) contribute to plant evolution, development, and adaptation to environmental changes, but the regulatory mechanisms are largely unknown. RNA-directed DNA methylation (RdDM) is 1 TE regulatory mechanism in plants. Here, we identified that novel ARGONAUTE 1 (AGO1)-binding Tudor domain proteins Precocious dissociation of sisters C/E (PDS5C/E) are involved in 24-nt siRNA production to establish RdDM on TEs in Arabidopsis thaliana. PDS5 family proteins are subunits of the eukaryote-conserved cohesin complex. However, the double mutant lacking angiosperm-specific subfamily PDS5C and PDS5E (pds5c/e) exhibited different developmental phenotypes and transcriptome compared with those of the double mutant lacking eukaryote-conserved subfamily PDS5A and PDS5B (pds5a/b), suggesting that the angiosperm-specific PDS5C/E subfamily has a unique function in angiosperm plants. Proteome and imaging analyses revealed that PDS5C/E interact with AGO1. The pds5c/e double mutant had defects in 24-nt siRNA accumulation and CHH DNA methylation on TEs. In addition, some lncRNAs that accumulated in the pds5c/e mutant were targeted by AGO1-loading 21-nt miRNAs and 21-nt siRNAs. These results indicate that PDS5C/E and AGO1 participate in 24-nt siRNA production for RdDM in the cytoplasm. These findings indicate that angiosperm plants evolved a new regulator, the PDS5C/E subfamily, to control the increase in TEs during angiosperm evolution.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas Argonautas , Metilação de DNA , RNA Interferente Pequeno , Metilação de DNA/genética , Proteínas Argonautas/metabolismo , Proteínas Argonautas/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Regulação da Expressão Gênica de Plantas , Domínio Tudor/genética , Elementos de DNA Transponíveis/genética , RNA de Plantas/genética , RNA de Plantas/metabolismo , Mutação/genética
3.
J Plant Res ; 136(2): 227-238, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36658292

RESUMO

Light is one of the indispensable elements that plants need in order to grow and develop. In particular, it is essential for inducing morphogenesis, such as suppression of hypocotyl elongation and cotyledon expansion, that plants undergo when they first emerge after germination. However, there is a lack of knowledge about the gene expression and, in particular, the translational levels that induce a response upon light exposure. We have investigated the translational expression of nuclear genes in Arabidopsis thaliana seedlings germinated in the dark and then exposed to blue monochromatic light. In this study, ribosome profiling analysis was performed in the blue-light-receptor mutant cry1cry2 and the light-signaling mutant hy5 to understand which signaling pathways are responsible for the changes in gene expression at the translational level after blue-light exposure. The analysis showed that the expression of certain chloroplast- and ribosome-related genes was up-regulated at the translational level in the wild type. However, in both mutants the translational up-regulation of ribosome-related genes was apparently compromised. This suggests that light signaling through photoreceptors and the HY5 transcription factor are responsible for translation of ribosome-related genes. To further understand the effect of photoreception by chloroplasts on nuclear gene expression, chloroplast function was inhibited by adding a photosynthesis inhibitor, 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), and a carotenoid synthesis inhibitor, norflurazon. The results show that inhibition of chloroplast function did not lead to an increase in the expression of ribosome-related genes at the translational level. These results suggest that signals from both the nucleus and chloroplasts are required to activate translation of ribosome-related genes during blue-light reception.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cloroplastos/genética , Cloroplastos/metabolismo , Fotossíntese , Luz , Ribossomos/genética , Ribossomos/metabolismo , Regulação da Expressão Gênica de Plantas , Mutação
4.
Commun Biol ; 5(1): 1390, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36539571

RESUMO

Recent emerging evidence has shown that readthrough transcripts (RTs), including polycistronic mRNAs, are also transcribed in eukaryotes. However, the post-transcriptional regulation for these remains to be elucidated. Here, we identify 271 polycistronic RT-producing loci in Arabidopsis. Increased accumulation of RTs is detected in the nonsense-mediated mRNA decay (NMD)-deficient mutants compared with wild type, and the second open reading frames (ORFs) of bicistronic mRNAs are rarely translated in contrast to the first ORFs. Intergenic splicing (IS) events which occur between first and second genes are seen in 158 RTs. Splicing inhibition assays suggest that IS eliminates the chance of transcription termination at the polyadenylation sites of the first gene and promotes accumulation of RTs. These results indicate that RTs arise from genes whose transcription termination is relatively weak or attenuated by IS, but NMD selectively degrades them. Ultimately, this report presents a eukaryotic strategy for RNA metabolism.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Degradação do RNAm Mediada por Códon sem Sentido , Splicing de RNA , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica
5.
Plant Physiol ; 189(2): 459-464, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35301535

RESUMO

Analyzing only one cell allows the changes and characteristics of intracellular metabolites during the chromosome segregation process to be precisely captured and mitotic sub-phases to be dissected at the metabolite level.


Assuntos
Segregação de Cromossomos , Mitose
6.
Healthc Inform Res ; 28(1): 35-45, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35172089

RESUMO

OBJECTIVE: This study analyzed the effects of computerization of medical information systems and a hospital payment scheme on medical care outcomes. Specifically, we examined the effects of Electronic Medical Records (EMRs) and a diagnosis procedure combination/per-diem payment scheme (DPC/PDPS) on the average length of hospital stay (ALOS). METHODS: Post-intervention changes in the monthly ALOS were measured using an interrupted time-series analysis. RESULTS: The level changes observed in the monthly ALOS immediately post-DPC/PDPS were -1.942 (95% confidence interval [CI], -2.856 to -1.028), -1.885 (95% CI, -3.176 to -0.593), -1.581 (95% CI, -3.081 to -0.082) and -2.461 (95% CI, -3.817 to 1.105) days in all ages, <50, 50-64, and ≥65 years, respectively. During the post-DPC/PDPS period, trends of 0.107 (95% CI, 0.069 to 0.144), 0.048 (95% CI, -0.006 to 0.101), 0.183 (95% CI, 0.122 to 0.245) and 0.110 (95% CI, 0.054 to 0.167) days/month, respectively, were observed. During the post-EMR period, trends of -0.053 (95% CI, -0.080 to -0.027), -0.093 (95% CI, -0.135 to -0.052), and -0.049 (95% CI, -0.087 to -0.012) days/month were seen for all ages, 50-64 and ≥65 years, respectively. CONCLUSIONS: The increasing post-DPC/PDPS trends offset the decline in ALOS observed immediately post-DPC/PDPS, and the observed ALOS was longer than the counterfactual at the end of the DPC/PDPS study periods. Conversely, due to the downward trend seen after EMR introduction, the actual ALOS at the end of the EMR study period was shorter than the counterfactual, suggesting that EMRs might be more effective than the DPC/PDPS in sustainably reducing the LOS.

8.
Nat Commun ; 12(1): 3593, 2021 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-34135337

RESUMO

Photoreceptors are conserved in green algae to land plants and regulate various developmental stages. In the ocean, blue light penetrates deeper than red light, and blue-light sensing is key to adapting to marine environments. Here, a search for blue-light photoreceptors in the marine metagenome uncover a chimeric gene composed of a phytochrome and a cryptochrome (Dualchrome1, DUC1) in a prasinophyte, Pycnococcus provasolii. DUC1 detects light within the orange/far-red and blue spectra, and acts as a dual photoreceptor. Analyses of its genome reveal the possible mechanisms of light adaptation. Genes for the light-harvesting complex (LHC) are duplicated and transcriptionally regulated under monochromatic orange/blue light, suggesting P. provasolii has acquired environmental adaptability to a wide range of light spectra and intensities.


Assuntos
Clorófitas/metabolismo , Oceanos e Mares , Fotorreceptores de Plantas/metabolismo , Fitoplâncton/metabolismo , Adaptação Fisiológica/genética , Núcleo Celular/metabolismo , Clorófitas/classificação , Clorófitas/genética , Criptocromos/genética , Criptocromos/metabolismo , Evolução Molecular , Luz , Metagenoma , Fotorreceptores de Plantas/genética , Filogenia , Fitocromo/genética , Fitocromo/metabolismo , Fitoplâncton/classificação , Fitoplâncton/genética , Folhas de Planta/genética , Folhas de Planta/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Transcrição Gênica/efeitos da radiação
9.
Methods Mol Biol ; 2213: 17-27, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33270189

RESUMO

After germination, plants determine their morphogenesis, such as hypocotyl elongation and cotyledon opening, by responding to various wavelengths of light (photomorphogenesis). Cryptochrome is a blue-light photoreceptor that controls de-etiolation, stomatal opening and closing, flowering time, and shade avoidance. Successful incorporation of these phenotypes as indicators into a chemical screening system results in faster selection of candidate compounds. Here, we describe phenotypic screening for the blue-light response of Arabidopsis thaliana seedling and the resulting process that clarifies that the compound obtained in the screening is an inhibitor of cryptochromes.


Assuntos
Arabidopsis/metabolismo , Criptocromos/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/análise , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/efeitos da radiação , Sistema Livre de Células , Cotilédone/anatomia & histologia , Cotilédone/efeitos dos fármacos , Cotilédone/efeitos da radiação , Criptocromos/metabolismo , Criptocromos/efeitos da radiação , Meios de Cultura , Hipocótilo/anatomia & histologia , Hipocótilo/efeitos dos fármacos , Hipocótilo/efeitos da radiação , Processamento de Imagem Assistida por Computador , Luz , Fenótipo , Biossíntese de Proteínas/efeitos dos fármacos , Biossíntese de Proteínas/efeitos da radiação , Proteínas Recombinantes/biossíntese , Plântula/efeitos dos fármacos , Plântula/efeitos da radiação , Bibliotecas de Moléculas Pequenas/farmacologia
10.
Plants (Basel) ; 9(5)2020 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-32403214

RESUMO

Upstream open reading frames (uORFs) are present in the 5' leader sequences (or 5' untranslated regions) upstream of the protein-coding main ORFs (mORFs) in eukaryotic polycistronic mRNA. It is well known that a uORF negatively affects translation of the mORF. Emerging ribosome profiling approaches have revealed that uORFs themselves, as well as downstream mORFs, can be translated. However, it has also been revealed that plants can fine-tune gene expression by modulating uORF-mediated regulation in some situations. This article reviews several proposed mechanisms that enable genes to escape from uORF-mediated negative regulation and gives insight into the application of uORF-mediated regulation for precisely controlling gene expression.

11.
Plants (Basel) ; 9(6)2020 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-32466493

RESUMO

Natural rubber is the main component of latex obtained from laticifer cells of Hevea brasiliensis. For improving rubber yield, it is essential to understand the genetic molecular mechanisms responsible for laticifer differentiation and rubber biosynthesis. Jasmonate enhances both secondary laticifer differentiation and rubber biosynthesis. Here, we carried out time-course RNA-seq analysis in suspension-cultured cells treated with methyljasmonic acid (MeJA) to characterize the gene expression profile. Gene Ontology (GO) analysis showed that the term "cell differentiation" was enriched in upregulated genes at 24 hours after treatment, but inversely, the term was enriched in downregulated genes at 5 days, indicating that MeJA could induce cell differentiation at an early stage of the response. Jasmonate signaling is activated by MYC2, a basic helix-loop-helix (bHLH)-type transcription factor (TF). The aim of this work was to find any links between transcriptomic changes after MeJA application and regulation by TFs. Using an in vitro binding assay, we traced candidate genes throughout the whole genome that were targeted by four bHLH TFs: Hb_MYC2-1, Hb_MYC2-2, Hb_bHLH1, and Hb_bHLH2. The latter two are highly expressed in laticifer cells. Their physical binding sites were found in the promoter regions of a variety of other TF genes, which are differentially expressed upon MeJA exposure, and rubber biogenesis-related genes including SRPP1 and REF3. These studies suggest the possibilities that Hb_MYC2-1 and Hb_MYC2-2 regulate cell differentiation and that Hb_bHLH1 and Hb_bHLH2 promote rubber biosynthesis. We expect that our findings will help to increase natural rubber yield through genetic control in the future.

12.
Int J Mol Sci ; 21(6)2020 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-32183354

RESUMO

The etiolation process, which occurs after germination, is terminated once light is perceived and then de-etiolation commences. During the de-etiolation period, monochromatic lights (blue, red and far-red) induce differences in gene expression profiles and plant behavior through their respective photoreceptors. ELONGATED HYPOCOTYL 5 (HY5), a bZIP-type transcription factor (TF), regulates gene expression in the de-etiolation process, and other bZIP TFs are also involved in this regulation. However, transcriptomic changes that occur in etiolated seedlings upon monochromatic light irradiation and the relationship with the bZIP TFs still remain to be elucidated. Here, we track changes in the transcriptome after exposure to white, blue, red and far-red light following darkness and reveal both shared and non-shared trends of transcriptomic change between the four kinds of light. Interestingly, after exposure to light, HY5 expression synchronized with those of the related bZIP TF genes, GBF2 and GBF3, rather than HY5 HOMOLOG (HYH). To speculate on the redundancy of target genes between the bZIP TFs, we inspected the genome-wide physical binding sites of homodimers of seven bZIP TFs, HY5, HYH, GBF1, GBF2, GBF3, GBF4 and EEL, using an in vitro binding assay. The results reveal large overlaps of target gene candidates, indicating a complicated regulatory literature among TFs. This work provides novel insight into understanding the regulation of gene expression of the plant response to monochromatic light irradiation.


Assuntos
Arabidopsis/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Germinação/fisiologia , Plântula/crescimento & desenvolvimento , Arabidopsis/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Perfilação da Expressão Gênica , Luz , Transcriptoma/genética
13.
Plant Cell Physiol ; 61(3): 536-545, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31794029

RESUMO

Light is one of the most essential environmental clues for plant growth and morphogenesis. Exposure to blue monochromatic light from darkness is a turning point for plant biological activity, and as a result dramatic changes in gene expression occur. To understand the translational impacts of blue light, we have performed ribosome profiling analysis and called translated open reading frames (ORFs) de novo within not only mRNAs but also non-coding RNAs (ncRNAs). Translation efficiency of 3,823 protein-coding ORFs, such as nuclear chloroplast-related genes, was up-regulated by blue light exposure. Moreover, the translational activation of the microRNA biogenesis-related genes, DCL1 and HYL1, was induced by blue light. Considering the 3-nucleotide codon periodicity of ribosome footprints, a few hundred short ORFs lying on ncRNAs and upstream ORFs (uORFs) on mRNAs were found that had differential translation status between blue light and dark. uORFs are known to have a negative effect on the expression of the main ORFs (mORFs) on the same mRNAs. Our analysis suggests that the translation of uORFs is likely to be more stimulated than that of the corresponding mORFs, and uORF-mediated translational repression of the mORFs in five genes was alleviated by blue light exposure. With data-based annotation of the ORFs, our analysis provides insights into the translatome in response to environmental changes, such as those involving light.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Luz , Processamento de Proteína Pós-Traducional/fisiologia , Processamento de Proteína Pós-Traducional/efeitos da radiação , RNA não Traduzido/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos da radiação , MicroRNAs/biossíntese , Fases de Leitura Aberta/genética , Biossíntese de Proteínas , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Ribonuclease III/genética , Ribonuclease III/metabolismo , Ribossomos/metabolismo
15.
Plant Cell Physiol ; 60(9): 1974-1985, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31368506

RESUMO

Root hairs protruding from epidermal cells increase the surface area for water absorption and nutrient uptake. Various environmental factors including light, oxygen concentration, carbon dioxide concentration, calcium and mycorrhizal associations promote root hair formation in Arabidopsis thaliana. Light regulates the expression of a large number of genes at the transcriptional and post-transcriptional levels; however, there is little information linking the light response to root hair development. In this study, we describe a novel mutant, light-sensitive root-hair development 1 (lrh1), that displays enhanced root hair development in response to light. Hypocotyl and root elongation was inhibited in the lrh1 mutant, which had a late flowering phenotype. We identified the gene encoding the p14 protein, a putative component of the splicing factor 3b complex essential for pre-mRNA splicing, as being responsible for the lrh1 phenotype. Indeed, regulation of alternative splicing was affected in lrh1 mutants and treatment with a splicing inhibitor mimicked the lrh1 phenotype. Genome-wide alterations in pre-mRNA splicing patterns including differential splicing events of light signaling- and circadian clock-related genes were found in lrh1 as well as a difference in transcriptional regulation of multiple genes including upregulation of essential genes for root hair development. These results suggest that pre-mRNA splicing is the key mechanism regulating root hair development in response to light signals.


Assuntos
Processamento Alternativo , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Precursores de RNA/genética , Splicing de RNA , Arabidopsis/crescimento & desenvolvimento , Relógios Circadianos/genética , Hipocótilo/genética , Hipocótilo/crescimento & desenvolvimento , Mutação , Fenótipo , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , RNA de Plantas/genética , Transdução de Sinais
16.
Front Plant Sci ; 10: 503, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31134102

RESUMO

Plant growth is strictly controlled by cell division, elongation, and differentiation for which adequate supplies of intracellular ATP are required. However, it is unclear how changes in the amount of intracellular ATP affect cell division and growth. To reveal the specific pathway dependent on ATP concentration, we performed analyses on the Arabidopsis mitochondria mutation sd3. The mutant is tiny, a result of a low amount of ATP caused by the disruption of Tim21, a subunit of the TIM23 protein complex localized in the inner membrane of the mitochondria. Loss of function of suppressor of gamma response 1 (SOG1) also restored the dwarf phenotype of wild type treated with antimycin A, a blocker of ATP synthesis in mitochondria. The sd3 phenotype is partially restored by the introduction of sog1, suppressor of gamma response 1, and kin10/kin11, subunits of Snf1-related kinase 1 (SnRK1). Additionally, SOG1 interacted with SnRK1, and was modified by phosphorylation in planta only after treatment with antimycin A. Transcripts of several negative regulators of the endocycle were up-regulated in the sd3 mutant, and this high expression was not observed in sd3sog1 and sd3kin11. We suggest that there is a novel regulatory mechanism for the control of plant cell cycle involving SnRK1 and SOG1, which is induced by low amounts of intracellular ATP, and controls plant development.

17.
Plant Cell Physiol ; 60(9): 1917-1926, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31004488

RESUMO

Although transcriptome changes have long been recognized as a mechanism to induce tentative substitution of expressed genes in diverse biological processes in plants, the regulation of translation-the final step of the central dogma of molecular biology-emerged as an alternative and prominent layer in defining the output of genes. Despite these demands, the genome-wide analysis of protein synthesis has posed technical challenges, resulting in the plant translatome being poorly understood. The development of ribosome profiling promises to address the hidden aspects of translation, and its application to plants is revolutionizing our knowledge of the translatome. This review outlines the array of recent findings provided by ribosome profiling and illustrates the power of the versatile technique in green organisms.


Assuntos
Plantas/genética , Ribossomos/genética , Transcriptoma
18.
Proc Natl Acad Sci U S A ; 115(30): 7831-7836, 2018 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-29915080

RESUMO

Plants adapt to alterations in light conditions by controlling their gene expression profiles. Expression of light-inducible genes is transcriptionally induced by transcription factors such as HY5. However, few detailed analyses have been carried out on the control of transcription start sites (TSSs). Of the various wavelengths of light, it is blue light (BL) that regulates physiological responses such as hypocotyl elongation and flowering time. To understand how gene expression is controlled not only by transcript abundance but also by TSS selection, we examined genome-wide TSS profiles in Arabidopsis seedlings after exposure to BL irradiation following initial growth in the dark. Thousands of genes use multiple TSSs, and some transcripts have upstream ORFs (uORFs) that take precedence over the main ORF (mORF) encoding proteins. The uORFs often function as translation inhibitors of the mORF or as triggers of nonsense-mediated mRNA decay (NMD). Transcription from TSSs located downstream of the uORFs in 220 genes is enhanced by BL exposure. This type of regulation is found in HY5 and HYH, major regulators of light-dependent gene expression. Translation efficiencies of the genes showing enhanced usage of these TSSs increased upon BL exposure. We also show that transcripts from TSSs upstream of uORFs in 45 of the 220 genes, including HY5, accumulated in a mutant of NMD. These results suggest that BL controls gene expression not only by enhancing transcriptions but also by choosing the TSS, and transcripts from downstream TSSs evade uORF-mediated inhibition to ensure high expression of light-regulated genes.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Proteínas de Transporte/metabolismo , Regulação da Expressão Gênica de Plantas/fisiologia , Proteínas Nucleares/metabolismo , Fases de Leitura Aberta/fisiologia , Sítio de Iniciação de Transcrição/fisiologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Fatores de Transcrição de Zíper de Leucina Básica/genética , Proteínas de Transporte/genética , Proteínas de Ligação a DNA , Proteínas Nucleares/genética
19.
Biomed Inform Insights ; 10: 1178222618777758, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29872307

RESUMO

We evaluated quasi-healthy cohorts (model cohorts), derived from clinical data, to determine how well they simulated control cohorts. Control cohorts comprised individuals extracted from a public checkup database in Japan, under the condition that their values for 3 basic laboratory tests fall within specific reference ranges (3Ts condition). Model cohorts comprised outpatients, extracted from a clinical database at a hospital, under the 3Ts condition or under the condition that their values for 4 laboratory tests fall within specific reference ranges (4Ts condition). Because even a patient with a serious illness, such as cancer, may present with normal values on basic laboratory tests, one additional condition was added: the duration (1 or 3 months; 1M or 3M) during which patients were not hospitalized after their first laboratory test. For evaluations, cohorts were specified by age and sex. The 4Ts + 3M condition was the most effective condition, under which model cohorts were used to successfully simulate age-dependent changes and sex differences in laboratory test values for control cohorts. Therefore, by properly setting the conditions for extracting quasi-healthy individuals, we can derive cohorts from clinical data to simulate various types of cohorts. Although some issues with the proposed method remain to be solved, this approach presents new possibilities for using clinical data for cohort studies.

20.
Stud Health Technol Inform ; 245: 1303, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29295386

RESUMO

We analyze the deterioration of clinical data quality due to anonymization. The result shows that data quality remained high with micro-aggregation and also verify the availability of noise addition to prevent illegal re-identification by matching another personal data.


Assuntos
Confidencialidade , Confiabilidade dos Dados , Anonimização de Dados , Humanos , Privacidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...