Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Blood ; 143(8): 721-733, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38048591

RESUMO

ABSTRACT: The volume of oxygen drawn from systemic capillaries down a partial pressure gradient is determined by the oxygen content of red blood cells (RBCs) and their oxygen-unloading kinetics, although the latter is assumed to be rapid and, therefore, not a meaningful factor. Under this paradigm, oxygen transfer to tissues is perfusion-limited. Consequently, clinical treatments to optimize oxygen delivery aim at improving blood flow and arterial oxygen content, rather than RBC oxygen handling. Although the oxygen-carrying capacity of blood is increased with transfusion, studies have shown that stored blood undergoes kinetic attrition of oxygen release, which may compromise overall oxygen delivery to tissues by causing transport to become diffusion-limited. We sought evidence for diffusion-limited oxygen release in viable human kidneys, normothermically perfused with stored blood. In a cohort of kidneys that went on to be transplanted, renal respiration correlated inversely with the time-constant of oxygen unloading from RBCs used for perfusion. Furthermore, the renal respiratory rate did not correlate with arterial O2 delivery unless this factored the rate of oxygen-release from RBCs, as expected from diffusion-limited transport. To test for a rescue effect, perfusion of kidneys deemed unsuitable for transplantation was alternated between stored and rejuvenated RBCs of the same donation. This experiment controlled oxygen-unloading, without intervening ischemia, holding all non-RBC parameters constant. Rejuvenated oxygen-unloading kinetics improved the kidney's oxygen diffusion capacity and increased cortical oxygen partial pressure by 60%. Thus, oxygen delivery to tissues can become diffusion-limited during perfusion with stored blood, which has implications in scenarios, such as ex vivo organ perfusion, major hemorrhage, and pediatric transfusion. This trial was registered at www.clinicaltrials.gov as #ISRCTN13292277.


Assuntos
Eritrócitos , Oxigênio , Humanos , Criança , Rim
2.
Electrophoresis ; 32(3-4): 423-30, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21298668

RESUMO

In the conventional bench-top approach, the DNA recombination process is time- and effort-consuming due to laborious procedures lasting from several hours to a day. A novel DNA selection and direct extraction process has been proposed, integrated and tested on chip. The integrative microfluidic chip can perform the whole procedure of DNA recombination, including DNA digestion, gel electrophoresis, DNA extraction and insert-vector ligation within 1 h. In this high-throughput design, the manual gel cutting was replaced by an automatic processing system that performed high-quality and high-recovery efficiency in DNA extraction process. With no need of gel-dissolving reagents and manipulation, the application of selection and direct extraction process could significantly eliminate the risks from UV and EtBr and also facilitate DNA recombination. Reliable output with high success rate of cloning has been achieved with a significant reduction in operational hazards, required materials, efforts and time.


Assuntos
DNA/análise , Técnicas Analíticas Microfluídicas/instrumentação , Técnicas Analíticas Microfluídicas/métodos , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Recombinação Genética/genética , Eletroforese/métodos , Desenho de Equipamento , Análise de Falha de Equipamento , Microfluídica/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...