Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biosci Biotechnol Biochem ; 70(1): 99-106, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16428826

RESUMO

(R)-3-Amino-3-phenylpropionic acid ((R)-beta-Phe) and (S)-3-amino-3-phenylpropionic acid ((S)-beta-Phe) are key compounds on account of their use as intermediates in synthesizing pharmaceuticals. Enantiomerically pure non-natural amino acids are generally prepared by enzymatic resolution of the racemic N-acetyl form, but despite the intense efforts this method could not be used for preparing enantiomerically pure beta-Phe, because the effective enzyme had not been found. Therefore, screening for microorganisms capable of amidohydrolyzing (R,S)-N-acetyl-3-amino-3-phenylpropionic acid ((R,S)-N-Ac-beta-Phe) in an enantiomer-specific manner was performed. A microorganism having (R)-enantiomer-specific amidohydrolyzing activity and another having both (R)-enantiomer- and (S)-enantiomer-specific amidohydrolyzing activities were obtained from soil samples. Using 16S rDNA analysis, the former organism was identified as Variovorax sp., and the latter as Burkholderia sp. Using these organisms, enantiomerically pure (R)-beta-Phe (>99.5% ee) and (S)-beta-Phe (>99.5% ee) with a high molar conversion yield (67%-96%) were obtained from the racemic substrate.


Assuntos
Fenilalanina/análogos & derivados , Microbiologia do Solo , Sistema Livre de Células , Concentração de Íons de Hidrogênio , Hidrólise , Fenilalanina/biossíntese , Fenilalanina/química , Estereoisomerismo , Especificidade por Substrato , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...