Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Japonês | MEDLINE | ID: mdl-32814736

RESUMO

PURPOSE: The purpose of this study was to improve the accuracy of dose-distribution calculations by understanding how the calculated dose varies with the change in the relative electron density replacing polymethyl methacrylate (PMMA) in patient-specific quality assurance. METHOD: We calculated the relative electron density at which dose attenuation in each dose calculation algorithm coincides with the measured value of the dose attenuation of single-field irradiation. Next, the dose change was calculated by changing the relative electron density or physical electron density for substituting PMMA for each X-ray energy and calculation algorithm. Furthermore, using clinical plans, changes in point-dose verification and dose-distribution verification that occurred when the relative electron density or physical electron density was varied were investigated. RESULTS: The dose attenuation varies depending on the dose-calculation algorithm, and the optimum value of the electron density is different for each. After the electron density optimization, the point dose verification using the 97.1% to 98.3% (3%/3 mm), 90.0% to 94.3% (2%/3 mm) and gained a dominant improvement tendency (P<0.001). CONCLUSIONS: We clarified dose change accompanying relative electron density or physical electron density change. We concluded that the accuracy of dose-distribution calculation for verification improves by replacing PMMA with optimal relative electron density or physical electron density.


Assuntos
Elétrons , Polimetil Metacrilato , Algoritmos , Humanos , Imagens de Fantasmas , Radiometria , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...