Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mech Behav Biomed Mater ; 152: 106437, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38354568

RESUMO

The multiscale approach in designing substrates for regenerative medicine endows them with beneficial properties determining their performance in the body. Substrates for corneal regeneration should reveal the proper transparency, mechanical properties and microstructure to maintain the functionality of the regenerated tissue. In our study, series of non-wovens with different fibres orientation (random (R), aligned (A)), topography (shish-kebab (KK), core-shell (CS)) and thickness were fabricated via electrospinning. The samples were assessed for mechanical (static tensile test) and optical properties (spectroscopy UV-Vis). The research evaluated the impact of different microstructures on the viability and morphology of three cell lines (Hs 680, HaCaT and RAW 264.7). The results showed how the fibres arrangement influenced mechanical behaviour of the non-wovens. The randomly oriented fibres were more elongated (up to 50 mm) and had a lower maximum tensile force (up to 0.46 N). In turn, the aligned fibres were characterized by lower elongation (up to 19 mm) and higher force (up to 1.45 N). The conducted transparency tests showed the relation between thickness (of the non-woven and fibres) and morphology of the substrate and light transmission. To simulate the in vivo conditions, prior to the light transmission studies, samples were immersed in water. All the samples exhibited high transparency after immersion in water (>80%). The impact of various morphologies was observed in the in vitro studies. All the samples proved high cells viability. Moreover, the substrate morphology had a significant impact on the orientation and arrangement of the fibroblast cytoskeleton. The aligned fibres were oriented in exactly the same direction. The conducted research proved that, by altering the non-wovens microstructure, the properties can be adjusted so as to induce the desirable cellular reaction. This indicates the high potential of electrospun fibres in terms of modulating the corneal cell behaviour in response to the implanted substrate.


Assuntos
Córnea , Citoesqueleto , Linhagem Celular , Sobrevivência Celular , Água
2.
Molecules ; 27(10)2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35630708

RESUMO

Emulsion electrospinning is a method of modifying a fibers' surface and functional properties by encapsulation of the bioactive molecules. In our studies, bovine serum albumin (BSA) played the role of the modifier, and to protect the protein during the electrospinning process, the W/O (water-in-oil) emulsions were prepared, consisting of polymer and micelles formed from BSA and anionic (sodium dodecyl sulfate-S) or nonionic (Tween 80-T) surfactant. It was found that the micelle size distribution was strongly dependent on the nature and the amount of the surfactant, indicating that a higher concentration of the surfactant results in a higher tendency to form smaller micelles (4-9 µm for S and 8-13 µm for T). The appearance of anionic surfactant micelles reduced the diameter of the fiber (100-700 nm) and the wettability of the nonwoven surface (up to 77°) compared to un-modified PCL polymer fibers (100-900 nm and 130°). The use of a non-ionic surfactant resulted in better loading efficiency of micelles with albumin (about 90%), lower wettability of the nonwoven fabric (about 25°) and the formation of larger fibers (100-1100 nm). X-ray photoelectron spectroscopy (XPS) was used to detect the presence of the protein, and UV-Vis spectrophotometry was used to determine the loading efficiency and the nature of the release. The results showed that the location of the micelles influenced the release profiles of the protein, and the materials modified with micelles with the nonionic surfactant showed no burst release. The release kinetics was characteristic of the zero-order release model compared to anionic surfactants. The selected surfactant concentrations did not adversely affect the biological properties of fibrous substrates, such as high viability and low cytotoxicity of RAW macrophages 264.7.


Assuntos
Surfactantes Pulmonares , Tensoativos , Emulsões/química , Excipientes , Lipoproteínas , Micelas , Polímeros , Soroalbumina Bovina/química , Tensoativos/química , Tensoativos/farmacologia
3.
Materials (Basel) ; 14(22)2021 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-34832307

RESUMO

Electrospinning was used to obtain multifunctional fibrous composite materials with a matrix of poly-ɛ-caprolactone (PCL) and 2 wt.% addition of a nanofiller: montmorillonite (MMT), montmorillonite intercalated with gentamicin sulphate (MMTG) or gentamicin sulphate (G). In the first stage, the aluminosilicate gallery was modified by introducing gentamicin sulfate into it, and the effectiveness of the intercalation process was confirmed on the basis of changes in the clay particle size from 0.5 µm (for MMT) to 0.8 µm (for MMTG), an increase in the interplanar distance d001 from 12.3 Å (for MMT) to 13.9 Å (for MMTG) and altered clay grain morphology. In the second part of the experiment, the electrospinning process was carried out in which the polymer nonwovens with and without the modifier were prepared directly from dichloromethane (DCM) and N,N-dimethylformamide (DMF). The nanocomposite fibrous membranes containing montmorillonite were prepared from the same polymer solution but after homogenization with the modifier (13 wt.%). The degree of dispersion of the modifier was evaluated by average microarray analysis from observed area (EDS), which was also used to determine the intercalation of montmorillonite with gentamicin sulfate. An increase in the size of the fibers was found for the materials with the presence of the modifier, with the largest diameters measured for PCL_MMT (625 nm), and the smaller ones for PCL_MMTG (578 nm) and PCL_G (512 nm). The dispersion of MMT and MMTG in the PCL fibers was also confirmed by indirect studies such as change in mechanical properties of the nonwovens membrane, where the neat PCL nonwoven was used as a reference material. The addition of the modifier reduced the contact angle of PCL nonwovens (from 120° for PCL to 96° for PCL_G and 98° for PCL_MMTG). An approximately 10% increase in tensile strength of the nonwoven fabric with the addition of MMT compared to the neat PCL nonwoven fabric was also observed. The results of microbiological tests showed antibacterial activity of all obtained materials; however, the inhibition zones were the highest for the materials containing gentamicin sulphate, and the release time of the active substance was significantly extended for the materials with the addition of montmorillonite containing the antibiotic. The results clearly show that the electrospinning technique can be effectively used to obtain nanobiocomposite fibers with the addition of nonintercalated and intercalated montmorillonite with improved strength and increased stiffness compared to materials made only of the polymer fibers, provided that a high filler dispersion in the spinning solution is obtained.

4.
Materials (Basel) ; 13(22)2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-33187087

RESUMO

Despite high interest in the issues of hemocompatibility of titanium implants, particularly those made of the Ti-13Nb-13Zr alloy, the applied methods of surface modification still do not always guarantee the physicochemical properties required for their safe operation. The factors that reduce the efficiency of the application of titanium alloys in the treatment of conditions of the cardiovascular system include blood coagulation and fibrous proliferation within the vessel's internal walls. They result from their surfaces' physicochemical properties not being fully adapted to the specifics of the circulatory system. Until now, the generation and development mechanics of these adverse processes are not fully known. Thus, the fundamental problem in this work is to determine the correlation between the physicochemical properties of the diamond like carbon (DLC) coating (shaped by the technological conditions of the process) applied onto the Ti-13Nb-13Zr alloy designed for contact with blood and its hemocompatibility. In the paper, microscopic metallographic, surface roughness, wettability, free surface energy, hardness, coating adhesion to the substrate, impendence, and potentiodynamic studies in artificial plasma were carried out. The surface layer with the DLC coating ensures the required surface roughness and hydrophobic character and sufficient pitting corrosion resistance in artificial plasma. On the other hand, the proposed CrN interlayer results in better adhesion of the coating to the Ti-13Nb-13Zr alloy. This type of coating is an alternative to the modification of titanium alloy surfaces using various elements to improve the blood environment's hemocompatibility.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...