RESUMO
In this work, we apply the spatial recurrence quantification analysis (RQA) to identify chaotic burst phase synchronisation in networks. We consider one neural network with small-world topology and another one composed of small-world subnetworks. The neuron dynamics is described by the Rulkov map, which is a two-dimensional map that has been used to model chaotic bursting neurons. We show that with the use of spatial RQA, it is possible to identify groups of synchronised neurons and determine their size. For the single network, we obtain an analytical expression for the spatial recurrence rate using a Gaussian approximation. In clustered networks, the spatial RQA allows the identification of phase synchronisation among neurons within and between the subnetworks. Our results imply that RQA can serve as a useful tool for studying phase synchronisation even in networks of networks.
RESUMO
We investigate the basin of attraction properties and its boundaries for chimera states in a circulant network of Hénon maps. It is known that coexisting basins of attraction lead to a hysteretic behaviour in the diagrams of the density of states as a function of a varying parameter. Chimera states, for which coherent and incoherent domains occur simultaneously, emerge as a consequence of the coexistence of basin of attractions for each state. Consequently, the distribution of chimera states can remain invariant by a parameter change, and it can also suffer subtle changes when one of the basins ceases to exist. A similar phenomenon is observed when perturbations are applied in the initial conditions. By means of the uncertainty exponent, we characterise the basin boundaries between the coherent and chimera states, and between the incoherent and chimera states. This way, we show that the density of chimera states can be not only moderately sensitive but also highly sensitive to initial conditions. This chimera's dilemma is a consequence of the fractal and riddled nature of the basin boundaries.
RESUMO
OBJECTIVE: We consider a network topology according to the cortico-cortical connection network of the human brain, where each cortical area is composed of a random network of adaptive exponential integrate-and-fire neurons. APPROACH: Depending on the parameters, this neuron model can exhibit spike or burst patterns. As a diagnostic tool to identify spike and burst patterns we utilise the coefficient of variation of the neuronal inter-spike interval. MAIN RESULTS: In our neuronal network, we verify the existence of spike and burst synchronisation in different cortical areas. SIGNIFICANCE: Our simulations show that the network arrangement, i.e. its rich-club organisation, plays an important role in the transition of the areas from desynchronous to synchronous behaviours.
Assuntos
Modelos Neurológicos , Rede Nervosa/fisiologia , Humanos , Potenciais da Membrana , Rede Nervosa/citologia , Neurônios/citologiaRESUMO
It is urgently aimed in prenatal medicine to identify pregnancies, which develop life-threatening preeclampsia prior to the manifestation of the disease. Here, we use recurrence-based methods to distinguish such pregnancies already in the second trimester, using the following cardiovascular time series: the variability of heart rate and systolic and diastolic blood pressures. We perform recurrence quantification analysis (RQA), in addition to a novel approach, ε-recurrence networks, applied to a phase space constructed by means of these time series. We examine all possible coupling structures in a phase space constructed with the above-mentioned biosignals. Several measures including recurrence rate, determinism, laminarity, trapping time, and longest diagonal and vertical lines for the recurrence quantification analysis and average path length, mean coreness, global clustering coefficient, assortativity, and scale local transitivity dimension for the network measures are considered as parameters for our analysis. With these quantities, we perform a quadratic discriminant analysis that allows us to classify healthy pregnancies and upcoming preeclamptic patients with a sensitivity of 91.7% and a specificity of 45.8% in the case of RQA and 91.7% and 68% when using ε-recurrence networks, respectively.
Assuntos
Modelos Cardiovasculares , Pré-Eclâmpsia/classificação , Pré-Eclâmpsia/fisiopatologia , Complicações Cardiovasculares na Gravidez/fisiopatologia , Algoritmos , Pressão Sanguínea/fisiologia , Eletrocardiografia , Feminino , Frequência Cardíaca/fisiologia , Humanos , Dinâmica não Linear , Gravidez , Segundo Trimestre da Gravidez , Recidiva , Fatores de Tempo , Ultrassonografia DopplerRESUMO
We investigate the collective dynamics of bursting neurons on clustered networks. The clustered network model is composed of subnetworks, each of them presenting the so-called small-world property. This model can also be regarded as a network of networks. In each subnetwork a neuron is connected to other ones with regular as well as random connections, the latter with a given intracluster probability. Moreover, in a given subnetwork each neuron has an intercluster probability to be connected to the other subnetworks. The local neuron dynamics has two time scales (fast and slow) and is modeled by a two-dimensional map. In such small-world network the neuron parameters are chosen to be slightly different such that, if the coupling strength is large enough, there may be synchronization of the bursting (slow) activity. We give bounds for the critical coupling strength to obtain global burst synchronization in terms of the network structure, that is, the probabilities of intracluster and intercluster connections. We find that, as the heterogeneity in the network is reduced, the network global synchronizability is improved. We show that the transitions to global synchrony may be abrupt or smooth depending on the intercluster probability.
Assuntos
Potenciais de Ação/fisiologia , Relógios Biológicos/fisiologia , Retroalimentação Fisiológica/fisiologia , Modelos Neurológicos , Rede Nervosa/fisiologia , Neurônios/fisiologia , Transmissão Sináptica/fisiologia , Animais , Simulação por Computador , HumanosRESUMO
Functional brain networks are composed of cortical areas that are anatomically and functionally connected. One of the cortical networks for which more information is available in the literature is the cat cerebral cortex. Statistical analyses of the latter suggest that its structure can be described as a clustered network, in which each cluster is a scale-free network possessing highly connected hubs. Those hubs are, on their hand, connected together in a strong fashion ("rich-club" network). We have built a clustered scale-free network inspired in the cat cortex structure so as to study their dynamical properties. In this article, we focus on the synchronization of bursting activity of the cortical areas and how it can be suppressed by means of neuron deactivation through suitably applied light pulses. We show that it is possible to effectively suppress bursting synchronization by acting on a single, yet suitably chosen neuron, as long as it is highly connected, thanks to the "rich-club" structure of the network.
Assuntos
Rede Nervosa , Animais , GatosRESUMO
We propose an extension of the recurrence plot concept to perform quantitative analyzes of roughness and disorder of spatial patterns at a fixed time. We introduce spatial recurrence plots (SRPs) as a graphical representation of the pointwise correlation matrix, in terms of a two-dimensional spatial return plot. This technique is applied to the study of complex patterns generated by coupled map lattices, which are characterized by measures of complexity based on SRPs. We show that the complexity measures we propose for SRPs provide a systematic way of investigating the distribution of spatially coherent structures, such as synchronization domains, in lattice profiles. This approach has potential for many more applications, e.g., in surface roughness analyzes.
RESUMO
We show experimentally the scenario of a two-frequency torus T2 breakdown, in which a global bifurcation occurs due to the collision of a torus with an unstable periodic orbit, creating a heteroclinic saddle connection, followed by an intermittent behavior.
RESUMO
We investigate the relationship between the loss of synchronization and the onset of shadowing breakdown via unstable dimension variability in complex systems. In the neighborhood of the critical transition to strongly nonhyperbolic behavior, the system undergoes on-off intermittency with respect to the synchronization state. There are potentially severe consequences of these facts on the validity of the computer-generated trajectories obtained from dynamical systems whose synchronization manifolds share the same nonhyperbolic properties.
RESUMO
We discuss the emergence of a collective phase locked state in an open chain of N unidirectionally weakly coupled nonidentical chaotic oscillators. Such a regime is characterized by a Lyapunov spectrum where N-1 exponents that were zero in the uncoupled regime assume negative values as the coupling strength increases. The dynamics of such collective state is studied, and a comparison is drawn with the case of phase synchronization of a pair of coupled chaotic oscillators. In particular, it is shown that a full phase synchronized state cannot be constructed without at least partial correlation in the chaotic amplitudes.