Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 17(17): 17516-17526, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37606956

RESUMO

Due to their superior optoelectronic properties, monolayer two-dimensional (2D) transition metal dichalcogenides (TMDs) have attracted significant attention for electroluminescent devices. However, challenges in isolating optoelectronically active TMD monolayers using scalable liquid phase exfoliation have precluded electroluminescence in large-area, solution-processed TMD films. Here, we overcome these limitations and demonstrate electroluminescence from molybdenum disulfide (MoS2) nanosheet films by employing a monolayer-rich MoS2 ink produced by electrochemical intercalation and megasonic exfoliation. Characteristic monolayer MoS2 photoluminescence and electroluminescence spectral peaks at 1.88-1.90 eV are observed in megasonicated MoS2 films, with the emission intensity increasing with film thickness over the range 10-70 nm. Furthermore, employing a vertical light-emitting capacitor architecture enables uniform electroluminescence in large-area devices. These results indicate that megasonically exfoliated MoS2 monolayers retain their direct bandgap character in electrically percolating thin films even following multistep solution processing. Overall, this work establishes megasonicated MoS2 inks as an additive manufacturing platform for flexible, patterned, and miniaturized light sources that can likely be expanded to other TMD semiconductors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...