Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biofouling ; 39(6): 629-642, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37592913

RESUMO

This study investigated the biofouling potential of surface-enhanced Raman scattering (SERS)-based sensor materials in the context of marine environments. Uncoated and monolithic commercial gold (Au) silicon nanopillar array SERS substrates, Au-coated carbon black nanoparticle (AuCB NP) substrates, uncoated and Au sputter-coated in-house SERS, and uncoated and Au sputter-coated glass controls were tested for biofouling potential using Ulva spp. as model biofouling organisms. The mean percentages of Ulva spp. zoospores that adhered per mm2 (×103) on the uncoated and coated Au silicon nanopillar array, AuCB NP, uncoated and Au sputter-coated in-house, and uncoated and Au sputter-coated glass substrates were 10.28%, 5.45%, 10.49%, 3.25%, 24.84%, 12.86% and 7.78%, respectively. Results indicated that surface properties such as hydrophobicity, roughness, Au sputter-coating and the presence of micro-refuges on nano- and microstructured substrates were critical to the biofouling formation.


Assuntos
Incrustação Biológica , Nanopartículas Metálicas , Ulva , Análise Espectral Raman/métodos , Incrustação Biológica/prevenção & controle , Silício/química , Biofilmes , Água do Mar/química , Nanopartículas Metálicas/química
2.
Sci Rep ; 13(1): 11011, 2023 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-37419935

RESUMO

Marine microplastics are emerging as a growing environmental concern due to their potential harm to marine biota. The substantial variations in their physical and chemical properties pose a significant challenge when it comes to sampling and characterizing small-sized microplastics. In this study, we introduce a novel microfluidic approach that simplifies the trapping and identification process of microplastics in surface seawater, eliminating the need for labeling. We examine various models, including support vector machine, random forest, convolutional neural network (CNN), and residual neural network (ResNet34), to assess their performance in identifying 11 common plastics. Our findings reveal that the CNN method outperforms the other models, achieving an impressive accuracy of 93% and a mean area under the curve of 98 ± 0.02%. Furthermore, we demonstrate that miniaturized devices can effectively trap and identify microplastics smaller than 50 µm. Overall, this proposed approach facilitates efficient sampling and identification of small-sized microplastics, potentially contributing to crucial long-term monitoring and treatment efforts.


Assuntos
Técnicas Analíticas Microfluídicas , Água do Mar , Técnicas Analíticas Microfluídicas/instrumentação , Técnicas Analíticas Microfluídicas/métodos , Água do Mar/química , Plásticos/química , Aprendizado de Máquina , Poluentes Químicos da Água/química
3.
Environ Sci Technol ; 57(31): 11666-11674, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37499098

RESUMO

Ulva zoospores are widespread marine macroalgae and a common organism found in biofouling communities due to their strong adhesive properties and quick settlement times. Using Ulva as a model organism, a strategy is presented where direct-current (DC) electric potentials are applied in conjunction with surface-enhanced Raman spectroscopy (SERS) to characterize, remove, and prevent Ulva from forming a biofilm on gold-capped nanopillar SERS substrates. Experiments were conducted within a poly(tetrafluoroethylene) (PTFE) flow channel device where the SERS substrates were used as an electrode. Ulva density, determined in situ by SERS and ex situ by electron and fluorescence microscopy, decreased under successively increasing low negative potentials up to -1.0 V. The presence of damaged Ulva suggests that the applied potential led to spore rupture. At the highest negative applied potential (-1.0 V), microparticles containing copper, which is known for its antimicrobial properties, were associated with Ulva on the SERS substrate and the lowest Ulva density was observed. These findings indicate that (1) SERS can be employed to study biofilm formation on nanostructured metal surfaces and (2) applying low-voltage electric potentials may be used to control Ulva biofouling on SERS marine sensors.


Assuntos
Incrustação Biológica , Ulva , Propriedades de Superfície , Biofilmes , Incrustação Biológica/prevenção & controle , Esporos
4.
ACS Appl Mater Interfaces ; 15(23): 28636-28648, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37265339

RESUMO

The most effective antifouling coatings are designed to slowly release biocides that target a broad spectrum of marine organisms. However, as biocides have a deleterious effect on marine life, there is demand for environmentally friendly coatings that resist fouling through physical interactions. We propose a simple platform for the development of such coatings based on bottlebrush-modified elastomers. The bottlebrush additives were synthesized to have side chain chemistries that are known to be fouling-resistant, and these were incorporated in a commercial elastomer through blending and/or covalent attachment. The fouling performance of these coatings was highly variable, with area coverages of hard and soft foulants ranging from 1.4% to 7.2% and 29.1% to 64.0%, respectively, across a set of eight materials. The origin of these differences was explained by examining the structure of the coating surface through chemical imaging by time-of-flight secondary ion mass spectrometry (TOF-SIMS) and topographic imaging by atomic force microscopy (AFM). We found that fouling by certain soft and hard fouling organisms was primarily influenced by surface composition, which was controlled by both the chemistry and loading level of the bottlebrush additive, and was independent of the inherent surface roughness. While no type of coating could resist all soft and hard foulants, a formulation based on a bottlebrush copolymer additive with both siloxane and fluorinated monomers was effective against nearly all organisms encountered in the study.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...