Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microorganisms ; 11(12)2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-38137972

RESUMO

Antibiotics enter the soil with compost prepared from livestock manures and other sources. There is concern that they may influence plant growth and cause antibiotic resistance in soil and plant endospheric microbiomes. In the present work, lettuce plants were cultivated in soil and hydroponics spiked with oxytetracycline (0, 15, and 300 mg × kg-1 and 0, 15, and 50 mg × L-1, respectively) during a 28-day greenhouse experiment. It was revealed that the antibiotic reduced the chlorophyll content, the biomass, and the length of the roots and stems by 1.4-4.7, 1.8-39, 2.5-3.2, and 1.8-6.3 times in soil and in hydroponics. The copy numbers of the tet(A) and tet(X) genes were revealed to be 4.51 × 103-1.58 × 105 and 8.36 × 106-1.07 × 108 copies × g-1, respectively, suggesting the potential migration of these genes from soil/hydroponics to plant roots and leaves. According to a non-metric multidimensional scaling (NMDS) analysis of the 16S rRNA amplicon sequencing data, endospheric bacterial communities were similar in leaves and roots independent of the growing substrate and antibiotic concentration. While soil bacterial communities were unaffected by the presence of antibiotics, hydroponic communities exhibited dependency, likely attributable to the absence of the mitigating effect of soil particle absorption.

2.
J Agric Food Chem ; 71(41): 14979-14988, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37791964

RESUMO

Serious concerns about the negative impact of ethylenediaminetetraacetic acid (EDTA) on the environment resulted in severe restrictions imposed on this compound in many countries. One of the main concerns is related to the use of EDTA in agriculture as a chelator in microelement fertilizers: being introduced directly into the sawing fields, it penetrates into groundwater, with no chance to be captured/recycled. Respectively, there is an active search for environmentally friendly, biodegradable alternatives for this chelator. In this study, we proposed a biodegradable chelating agent, 2-((1,2-dicarboxyethyl)amino)pentanedioic acid (IGSA). It was synthesized in accordance with the principles of "green chemistry" from readily available nonhazardous precursors using water as a solvent; in addition, the method yields literally no waste. The synthesized chelator in the form of the crude reaction mixture was further used for preparing a multicomponent micronutrient fertilizer (B, Zn, Fe, Cu, Mn, and Mo). The fertilizer was shown to be highly biodegradable (72% in 28 days), while the EDTA-based product degraded only by 13%. The plant growing efficiency was tested on lettuce in the greenhouse experiments. The results were compared against the known commercial fertilizers based on EDTA and iminodisuccinic acid (IDS). The newly developed IGSA-based fertilizer significantly outperformed the EDTA-based fertilizer in lettuce biomass (1.4 and 1.6 times for root and foliar application, respectively). The total mineral uptake was almost two times higher (1.9 and 1.8 times for root and foliar treatments, respectively) compared to the EDTA-based complex and even slightly higher (1.2 and 1.1 times, respectively) compared to the IDS-based complex. Our work opens the doors for the industrial scale production and application of this fully "green", inexpensive microelement fertilizer that has the potential to replace the EDTA-based products.


Assuntos
Quelantes , Oligoelementos , Ácido Edético , Fertilizantes , Micronutrientes , Fertilização , Solo
3.
Environ Sci Pollut Res Int ; 28(8): 9610-9627, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33155112

RESUMO

Oil spills are events that frequently lead to petroleum pollution. This pollution may cause stress to microbial communities, which require long adaption periods. Soil petroleum pollution is currently considered one of the most serious environmental problems. In the present work, processes occurring in the bacterial communities of three soil samples with different physicochemical characteristics, artificially polluted with 12% of crude oil, were investigated in 120-day laboratory experiment. It was found that the total petroleum hydrocarbon content did not decrease during this time; however, the proportion of petroleum fractions was altered. Petroleum pollution led to a short-term decrease in the bacterial 16S rRNA gene copy number. On the basis of amplicon sequencing analysis, it was concluded that bacterial community successions were similar in the three soils investigated. Thus, the phyla Actinobacteria and Proteobacteria and candidate TM7 phylum (Saccaribacteria) were predominant with relative abundances ranging from 35 to 58%, 25 to 30%, and 15 to 35% in different samples, respectively. The predominant operational taxonomic units (OTUs) after pollution belonged to the genera Rhodococcus and Mycobacterium, families Nocardioidaceae and Sinobacteraceae, and candidate class ТМ7-3. Genes from the alkIII group encoding monoxygenases were the most abundant compared with other catabolic genes from the alkI, alkII, GN-PAH, and GP-PAH groups, and their copy number significantly increased after pollution. The copy numbers of expressed genes involved in the horizontal transfer of catabolic genes, FlgC, TraG, and OmpF, also increased after pollution by 11-33, 16-63, and 11-71 times, respectively. The bacterial community structure after a high level of petroleum pollution changed because of proliferation of the cells that initially were able to decompose hydrocarbons, and in the second place, because proliferation of the cells that received these catabolic genes through horizontal transfer.


Assuntos
Poluição por Petróleo , Petróleo , Poluentes do Solo , Biodegradação Ambiental , Hidrocarbonetos , RNA Ribossômico 16S/genética , Solo , Microbiologia do Solo , Poluentes do Solo/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...