Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biosens Bioelectron ; 26(8): 3405-12, 2011 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-21316211

RESUMO

There is a lack of methods suitable for generation of data about the dynamics of effects on cell membranes with a high sensitivity. Such methods are urgently needed to support the optimisation of interaction of substances, particles or materials with cell. The goal of this article is to use an improved microhole chip system to monitor the alterations of cells due to the interactions of polymer-DNA complexes. This should demonstrate exemplarily that subtoxic effect of biological relevant particles or substances at relevant concentrations can be monitored for several hours. By using a microhole cell chip and a microfluidic unit single cells can be electrically interfaced via microholes and the use of small electrodes with high impedances is not necessary. For separation and positioning of the cells onto the hole negative pressure is applied on the reverse side of the chip. Under cell culture conditions the cell starts to spread on the biocompatible insulating chip membrane resulting in a stable interface to an adherent growing cell. After the spreading process is finished, the polymer/polyplex solution is added and the impedance is measured with respect to time. To illustrate the cellular parameter which can affect the measured impedance a simple simulation based on the finite element method (FEM) is performed. It was shown for the first time that the impedance-based method predicated on the microhole chip can be used for biological relevant substances at relevant concentrations and that it is more sensitive than the well-established biological marker.


Assuntos
Técnicas Biossensoriais/métodos , Membrana Celular/efeitos dos fármacos , Técnicas Analíticas Microfluídicas/métodos , Células Cultivadas , Impedância Elétrica , Humanos
2.
Artigo em Inglês | MEDLINE | ID: mdl-22256298

RESUMO

Highly-sensitive analysis systems based on cellular multi-parameter are needed in the diagnostics. Therefore we improved our previously developed chip platform for another additional analysis method, the fluorescence in situ hybridization. Fluorescence in situ hybridization (FISH) is a technique used in the diagnostics to determine the localization and the presence or absence of specific DNA sequence. To improve this labor- and cost-intensive method, we reduced the assay consumption by a factor of 5 compared to the standard protocol. Microhole chips were used for making the cells well addressable. The chips were fabricated by semiconductor technology on the basis of a Silicon wafer with a thin deposited silicon nitride layer (Si(3)N(4)). Human retina pigment epithelia (ARPE-19) cells were arrayed on 5-µm holes of a 35 × 35 microhole-array by a gently negative differential pressure of around 5 mbar. After 3 hours of incubation the cells were attached to the chip and the FISH protocol was applied to the positioned cells. A LabView software was developed to simplify the analysis. The software automatically counts the number of dots (positive labeled chromosome regions) as well as the distance between adjacent dots. Our developed platform reduces the assay consumption and the labor time. Furthermore, during the 3 hours of incubation non-invasive or minimal-invasive methods like Raman- and impedance-spectroscopy can be applied.


Assuntos
Hibridização in Situ Fluorescente/métodos , Técnicas Analíticas Microfluídicas/métodos , Linhagem Celular , Fluoresceína-5-Isotiocianato/química , Humanos , Processamento de Imagem Assistida por Computador , Luz , Microscopia de Fluorescência , Software , Xantenos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...