Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(6): e2211368120, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36730202

RESUMO

Ligation of T cell receptor (TCR) to peptide-MHC (pMHC) complexes initiates signaling leading to T cell activation and TCR ubiquitination. Ubiquitinated TCR is then either internalized by the T cell or released toward the antigen-presenting cell (APC) in extracellular vesicles. How these distinct fates are orchestrated is unknown. Here, we show that clathrin is first recruited to TCR microclusters by HRS and STAM2 to initiate release of TCR in extracellular vesicles through clathrin- and ESCRT-mediated ectocytosis directly from the plasma membrane. Subsequently, EPN1 recruits clathrin to remaining TCR microclusters to enable trans-endocytosis of pMHC-TCR conjugates from the APC. With these results, we demonstrate how clathrin governs bidirectional membrane exchange at the immunological synapse through two topologically opposite processes coordinated by the sequential recruitment of ecto- and endocytic adaptors. This provides a scaffold for direct two-way communication between T cells and APCs.


Assuntos
Clatrina , Sinapses Imunológicas , Clatrina/metabolismo , Receptores de Antígenos de Linfócitos T , Linfócitos T , Ativação Linfocitária
2.
Nat Commun ; 13(1): 3460, 2022 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-35710644

RESUMO

The immunological synapse is a molecular hub that facilitates the delivery of three activation signals, namely antigen, costimulation/corepression and cytokines, from antigen-presenting cells (APC) to T cells. T cells release a fourth class of signaling entities, trans-synaptic vesicles (tSV), to mediate bidirectional communication. Here we present bead-supported lipid bilayers (BSLB) as versatile synthetic APCs to capture, characterize and advance the understanding of tSV biogenesis. Specifically, the integration of juxtacrine signals, such as CD40 and antigen, results in the adaptive tailoring and release of tSV, which differ in size, yields and immune receptor cargo compared with steadily released extracellular vesicles (EVs). Focusing on CD40L+ tSV as model effectors, we show that PD-L1 trans-presentation together with TSG101, ADAM10 and CD81 are key in determining CD40L vesicular release. Lastly, we find greater RNA-binding protein and microRNA content in tSV compared with EVs, supporting the specialized role of tSV as intercellular messengers.


Assuntos
Ligante de CD40 , Vesículas Extracelulares , Ligante de CD40/metabolismo , Vesículas Extracelulares/metabolismo , Sinapses Imunológicas , Vesículas Sinápticas , Linfócitos T
3.
Nano Lett ; 21(21): 9247-9255, 2021 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-34709845

RESUMO

T-cells engage with antigen-presenting cells in search for antigenic peptides and form transient interfaces termed immunological synapses. Synapse topography affects receptor binding rates and the mutual segregation of proteins due to size exclusion effects. It is hence important to determine the 3D topography of the immunological synapse at high precision. Current methods provide only rather coarse images of the protein distribution within the synapse. Here, we applied supercritical angle fluorescence microscopy combined with defocused imaging, which allows three-dimensional single molecule localization microscopy (3D-SMLM) at an isotropic localization precision below 15 nm. Experiments were performed on hybrid synapses between primary T-cells and functionalized glass-supported lipid bilayers. We used 3D-SMLM to quantify the cleft size within the synapse by mapping the position of the T-cell receptor (TCR) with respect to the supported lipid bilayer, yielding average distances of 18 nm up to 31 nm for activating and nonactivating bilayers, respectively.


Assuntos
Sinapses Imunológicas , Imagem Individual de Molécula , Sinapses Imunológicas/metabolismo , Microscopia de Fluorescência/métodos , Receptores de Antígenos de Linfócitos T , Imagem Individual de Molécula/métodos , Linfócitos T
4.
ACS Nano ; 15(9): 15057-15068, 2021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-34463486

RESUMO

DNA origami structures provide flexible scaffolds for the organization of single biomolecules with nanometer precision. While they find increasing use for a variety of biological applications, the functionalization with proteins at defined stoichiometry, high yield, and under preservation of protein function remains challenging. In this study, we applied single molecule fluorescence microscopy in combination with a cell biological functional assay to systematically evaluate different strategies for the site-specific decoration of DNA origami structures, focusing on efficiency, stoichiometry, and protein functionality. Using an activating ligand of the T-cell receptor (TCR) as the protein of interest, we found that two commonly used methodologies underperformed with regard to stoichiometry and protein functionality. While strategies employing tetravalent wildtype streptavidin for coupling of a biotinylated TCR-ligand yielded mixed populations of DNA origami structures featuring up to three proteins, the use of divalent (dSAv) or DNA-conjugated monovalent streptavidin (mSAv) allowed for site-specific attachment of a single biotinylated TCR-ligand. The most straightforward decoration strategy, via covalent DNA conjugation, resulted in a 3-fold decrease in ligand potency, likely due to charge-mediated impairment of protein function. Replacing DNA with charge-neutral peptide nucleic acid (PNA) in a ligand conjugate emerged as the coupling strategy with the best overall performance in our study, as it produced the highest yield with no multivalent DNA origami structures and fully retained protein functionality. With our study we aim to provide guidelines for the stoichiometrically defined, site-specific functionalization of DNA origami structures with proteins of choice serving a wide range of biological applications.


Assuntos
DNA , Nanoestruturas
5.
Cancers (Basel) ; 13(8)2021 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-33917832

RESUMO

Pancreatic cancer has one of the worst prognoses of any human malignancy and leukocyte infiltration is a major prognostic marker of the disease. As current immunotherapies confer negligible survival benefits, there is a need to better characterise leukocytes in pancreatic cancer to identify better therapeutic strategies. In this study, we analysed 32 human pancreatic cancer patients from two independent cohorts. A multi-parameter mass-cytometry analysis was performed on 32,000 T-cells from eight patients. Single-cell RNA sequencing dataset analysis was performed on a cohort of 24 patients. Multiplex immunohistochemistry imaging and spatial analysis were performed to map immune infiltration into the tumour microenvironment. Regulatory T-cell populations demonstrated highly immunosuppressive states with high TIGIT, ICOS and CD39 expression. CD8+ T-cells were found to be either in senescence or an exhausted state. The exhausted CD8 T-cells had low PD-1 expression but high TIGIT and CD39 expression. These findings were corroborated in an independent pancreatic cancer single-cell RNA dataset. These data suggest that T-cells are major players in the suppressive microenvironment of pancreatic cancer. Our work identifies multiple novel therapeutic targets that should form the basis for rational design of a new generation of clinical trials in pancreatic ductal adenocarcinoma.

6.
Proc Natl Acad Sci U S A ; 118(4)2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33468643

RESUMO

T cells detect with their T cell antigen receptors (TCRs) the presence of rare agonist peptide/MHC complexes (pMHCs) on the surface of antigen-presenting cells (APCs). How extracellular ligand binding triggers intracellular signaling is poorly understood, yet spatial antigen arrangement on the APC surface has been suggested to be a critical factor. To examine this, we engineered a biomimetic interface based on laterally mobile functionalized DNA origami platforms, which allow for nanoscale control over ligand distances without interfering with the cell-intrinsic dynamics of receptor clustering. When targeting TCRs via stably binding monovalent antibody fragments, we found the minimum signaling unit promoting efficient T cell activation to consist of two antibody-ligated TCRs within a distance of 20 nm. In contrast, transiently engaging antigenic pMHCs stimulated T cells robustly as well-isolated entities. These results identify pairs of antibody-bound TCRs as minimal receptor entities for effective TCR triggering yet validate the exceptional stimulatory potency of single isolated pMHC molecules.


Assuntos
Células Apresentadoras de Antígenos/imunologia , Linfócitos T CD4-Positivos/imunologia , DNA/imunologia , Complexo Principal de Histocompatibilidade/genética , Receptores de Antígenos de Linfócitos T/química , Animais , Células Apresentadoras de Antígenos/citologia , Linfócitos T CD4-Positivos/citologia , DNA/química , DNA/genética , Expressão Gênica , Ligantes , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Ativação Linfocitária , Camundongos , Conformação de Ácido Nucleico , Fosfatidilcolinas/química , Fosfatidilcolinas/metabolismo , Cultura Primária de Células , Ligação Proteica , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/imunologia , Transdução de Sinais , Anticorpos de Cadeia Única/química , Anticorpos de Cadeia Única/metabolismo , Baço/citologia , Baço/imunologia
7.
Nat Cell Biol ; 11(10): 1181-90, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19749746

RESUMO

The transcriptional regulators that couple interfollicular basal keratinocyte proliferation arrest to commitment and differentiation are yet to be identified. Here we report that the basic region leucine zipper transcription factors C/EBPalpha and C/EBPbeta are co-expressed in basal keratinocytes, and are coordinately upregulated as keratinocytes exit the basal layer and undergo terminal differentiation. Mice lacking both C/EBPalpha and beta in the epidermis showed increased proliferation of basal keratinocytes and impaired commitment to differentiation. This led to ectopic expression of keratin 14 (K14) and DeltaNp63 in suprabasal cells, decreased expression of spinous and granular layer proteins, parakeratosis and defective epidermal water barrier function. Knock-in mutagenesis revealed that C/EBP-E2F interaction was required for control of interfollicular epidermis (IFE) keratinocyte proliferation, but not for induction of spinous and granular layer markers, whereas C/EBP DNA binding was required for DeltaNp63 downregulation and K1/K10 induction. Finally, loss of C/EBPalpha/beta induced stem cell gene expression signatures in the epidermis. C/EBPs, therefore, couple basal keratinocyte cell cycle exit to commitment to differentiation through E2F repression and DNA binding, respectively, and may act to restrict the epidermal stem cell compartment.


Assuntos
Proteína alfa Estimuladora de Ligação a CCAAT/metabolismo , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Diferenciação Celular/fisiologia , Proliferação de Células , Queratinócitos/metabolismo , Animais , Proteína alfa Estimuladora de Ligação a CCAAT/genética , Proteína beta Intensificadora de Ligação a CCAAT/genética , Diferenciação Celular/genética , Embrião de Mamíferos/metabolismo , Células Epidérmicas , Epiderme/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Queratina-14/genética , Queratina-14/metabolismo , Queratinócitos/citologia , Camundongos , Camundongos Knockout , Proteínas Nucleares/metabolismo
8.
Cancer Cell ; 13(4): 299-310, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18394553

RESUMO

Mutations in the CEBPA gene are present in 7%-10% of human patients with acute myeloid leukemia (AML). However, no genetic models exist that demonstrate their etiological relevance. To mimic the most common mutations affecting CEBPA-that is, those leading to loss of the 42 kDa C/EBPalpha isoform (p42) while retaining the 30kDa isoform (p30)-we modified the mouse Cebpa locus to express only p30. p30 supported the formation of granulocyte-macrophage progenitors. However, p42 was required for control of myeloid progenitor proliferation, and p42-deficient mice developed AML with complete penetrance. p42-deficient leukemia could be transferred by a Mac1+c-Kit+ population that gave rise only to myeloid cells in recipient mice. Expression profiling of this population against normal Mac1+c-Kit+ progenitors revealed a signature shared with MLL-AF9-transformed AML.


Assuntos
Proteína alfa Estimuladora de Ligação a CCAAT/metabolismo , Regulação Leucêmica da Expressão Gênica , Leucemia Mielomonocítica Aguda/genética , Leucemia Mielomonocítica Aguda/patologia , Modelos Biológicos , Proteínas Mutantes/metabolismo , Células-Tronco Neoplásicas/patologia , Animais , Proteína alfa Estimuladora de Ligação a CCAAT/deficiência , Proteína alfa Estimuladora de Ligação a CCAAT/genética , Diferenciação Celular , Progressão da Doença , Perfilação da Expressão Gênica , Granulócitos/citologia , Antígeno de Macrófago 1/metabolismo , Camundongos , Camundongos Knockout , Células Progenitoras Mieloides/patologia , Transplante de Neoplasias , Células-Tronco Neoplásicas/metabolismo , Fenótipo , Isoformas de Proteínas/metabolismo , Proteínas Proto-Oncogênicas c-kit/metabolismo
9.
EMBO J ; 26(4): 1081-93, 2007 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-17290224

RESUMO

The C/EBPalpha transcription factor regulates hepatic nitrogen, glucose, lipid and iron metabolism. However, how it is able to independently control these processes is not known. Here, we use mouse knock-in mutagenesis to identify C/EBPalpha domains that specifically regulate hepatic gluconeogenesis and lipogenesis. In vivo deletion of a proline-histidine rich domain (PHR), dephosphorylated at S193 by insulin signaling, dysregulated genes involved in the generation of acetyl-CoA and NADPH for triglyceride synthesis and led to increased hepatic lipogenesis. These promoters bound SREBP-1 as well as C/EBPalpha, and the PHR was required for C/EBPalpha-SREBP transcriptional synergy. In contrast, the highly conserved C/EBPalpha CR4 domain was found to undergo liver-specific dephosphorylation of residues T222 and T226 upon fasting, and alanine mutation of these residues upregulated the hepatic expression of the gluconeogenic G6Pase and PEPCK mRNAs, but not PGC-1alpha, leading to glucose intolerance. Our results show that pathway-specific metabolic regulation can be achieved through a single transcription factor containing context-sensitive regulatory domains, and indicate C/EBPalpha phosphorylation as a PGC-1alpha-independent mechanism for regulating hepatic gluconeogenesis.


Assuntos
Proteína alfa Estimuladora de Ligação a CCAAT/genética , Proteína alfa Estimuladora de Ligação a CCAAT/metabolismo , Regulação da Expressão Gênica/genética , Gluconeogênese/genética , Lipogênese/genética , Estrutura Terciária de Proteína , Sequência de Aminoácidos , Animais , Western Blotting , Imunoprecipitação da Cromatina , Primers do DNA , Gluconeogênese/fisiologia , Hepatócitos , Lipogênese/fisiologia , Camundongos , Dados de Sequência Molecular , Mutagênese , Fosforilação , Reação em Cadeia da Polimerase , Alinhamento de Sequência , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo
10.
Mol Cell Biol ; 26(3): 1028-37, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16428455

RESUMO

The C/EBPalpha transcription factor regulates growth and differentiation of several tissues during embryonic development. Several hypotheses as to how C/EBPalpha inhibits cellular growth in vivo have been derived, mainly from studies of tissue culture cells. In fetal liver it has been proposed that a short, centrally located, 15-amino-acid proline-histidine-rich region (PHR) of C/EBPalpha is responsible for the growth-inhibitory function of the protein through its ability to interact with CDK2 and CDK4, thereby inhibiting their activities. Homozygous Cebpa(DeltaPHR/DeltaPHR) (DeltaPHR) mice, carrying a modified cebpa allele lacking amino acids 180 to 194, were born at the Mendelian ratio, reached adulthood, and displayed no apparent adverse phenotypes. When fetal livers from the DeltaPHR mice were analyzed for their expression of cell cycle markers, bromodeoxyuridine incorporation, cyclin-dependent kinase 2 kinase activity, and global gene expression, we failed to detect any cell cycle or developmental differences between the DeltaPHR mice and their control littermates. These in vivo data demonstrate that any C/EBPalpha-mediated growth repression via the PHR as well as the basic region is dispensable for proper embryonic development of, and cell cycle control in, the liver. Surprisingly, control experiments performed in C/EBPalpha null fetal livers yielded similar results.


Assuntos
Proteína alfa Estimuladora de Ligação a CCAAT/metabolismo , Histidina/química , Fígado/embriologia , Prolina/química , Adipócitos/citologia , Sequência de Aminoácidos , Animais , Proteína alfa Estimuladora de Ligação a CCAAT/química , Proteína alfa Estimuladora de Ligação a CCAAT/genética , Diferenciação Celular , Quinase 2 Dependente de Ciclina/metabolismo , Quinase 4 Dependente de Ciclina/metabolismo , Embrião de Mamíferos/metabolismo , Desenvolvimento Embrionário/genética , Histidina/genética , Humanos , Fígado/metabolismo , Camundongos , Camundongos Mutantes , Dados de Sequência Molecular , Prolina/genética , Estrutura Terciária de Proteína , Ratos , Deleção de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...