Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 138(34): 11031-7, 2016 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-27490369

RESUMO

Solid-state diffusion is often the primary limitation in the synthesis of crystalline inorganic materials and prevents the potential discovery and isolation of new materials that may not be the most stable with respect to the reaction conditions. Synthetic approaches that circumvent diffusion in solid-state reactions are rare and often allow the formation of metastable products. To this end, we present an in situ study of the solid-state metathesis reactions MCl2 + Na2S2 → MS2 + 2 NaCl (M = Fe, Co, Ni) using synchrotron powder X-ray diffraction and differential scanning calorimetry. Depending on the preparation method of the reaction, either combining the reactants in an air-free environment or grinding homogeneously in air before annealing, the barrier to product formation, and therefore reaction pathway, can be altered. In the air-free reactions, the product formation appears to be diffusion limited, with a number of intermediate phases observed before formation of the MS2 product. However, grinding the reactants in air allows NaCl to form directly without annealing and displaces the corresponding metal and sulfide ions into an amorphous matrix, as confirmed by pair distribution function analysis. Heating this mixture yields direct nucleation of the MS2 phase and avoids all crystalline binary intermediates. Grinding in air also dissipates a large amount of lattice energy via the formation of NaCl, and the crystallization of the metal sulfide is a much less exothermic process. This approach has the potential to allow formation of a range of binary, ternary, or higher-ordered compounds to be synthesized in the bulk, while avoiding the formation of many binary intermediates that may otherwise form in a diffusion-limited reaction.

2.
J Am Chem Soc ; 137(11): 3827-33, 2015 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-25746853

RESUMO

Rational preparation of materials by design is a major goal of inorganic, solid-state, and materials chemists alike. Oftentimes, the use of nonmetallurgical reactions (e.g., chalcogenide fluxes, hydrothermal syntheses, and in this case solid-state metathesis) alters the thermodynamic driving force of the reaction and allows new, refractory, or otherwise energetically unfavorable materials to form under softer conditions. Taking this a step further, alteration of a metathesis reaction pathway can result in either the formation of the equilibrium marcasite polymorph (by stringent exclusion of air) or the kinetically controlled formation of the high-pressure pyrite polymorph of CuSe2 (by exposure to air). From analysis of the reaction coordinate with in situ synchrotron X-ray diffraction and pair distribution function analysis as well as differential scanning calorimetry, it is clear that the air-exposed reaction proceeds via slight, endothermic rearrangements of crystalline intermediates to form pyrite, which is attributed to partial solvation of the reaction from atmospheric humidity. In contrast, the air-free reaction proceeds via a significant exothermic process to form marcasite. Decoupling the formation of NaCl from the formation of CuSe2 enables kinetic control to be exercised over the resulting polymorph of these superconducting metal dichalcogenides.

3.
Inorg Chem ; 54(1): 370-8, 2015 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-25522913

RESUMO

Inorganic materials with organic constituents-hybrid materials-have shown incredible promise as chemically tunable functional materials with interesting optical and electronic properties. Here, the preparation and structure are reported of two hybrid materials containing the optoelectronically active tropylium ion within tin- and lead-iodide inorganic frameworks with distinct topologies. The crystal structures of tropylium tin iodide, (C7H7)2SnI6, and tropylium lead iodide, C7H7PbI3, were solved using high-resolution synchrotron powder X-ray diffraction informed by X-ray pair distribution function data and high-resolution time-of-flight neutron diffraction. Tropylium tin iodide contains isolated tin(IV)-iodide octahedra and crystallizes as a deep black solid, while tropylium lead iodide presents one-dimensional chains of face-sharing lead(II)-iodide octahedra and crystallizes as a bright red-orange powder. Experimental diffuse reflectance spectra are in good agreement with density functional calculations of the electronic structure. Calculations of the band decomposed charge densities suggest that the deep black color of tropylium tin iodide is attributed to iodide ligand to tin metal charge transfer, while the bright red-orange color of tropylium lead iodide arises from charge transfer between iodine and tropylium states. Understanding the origins of the observed optoelectronic properties of these two compounds, with respect to their distinct topologies and organic-inorganic interactions, provides insight into the design of tropylium-containing compounds for potential optical and electronic applications.

4.
Angew Chem Int Ed Engl ; 53(6): 1684-8, 2014 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-24453115

RESUMO

Tetraborides of chromium and manganese exhibit an unusual boron-atom framework that resembles the hypothetical tetragonal diamond. They are believed to be very hard. Single crystals of MnB4 have now been grown. The compound crystallizes in the monoclinic crystal system (space group P21 /c) with a structure that has four crystallographically independent boron-atom positions, as confirmed by (11) B MAS-NMR spectroscopy. An unexpected short distance between the Mn atoms suggests a double Mn-Mn bond and is caused by Peierls distortion. The structure was solved using group-subgroup-relationships. DFT calculations indicate Mn(I) centers and paramagnetism, as confirmed by magnetic measurements. The density of states shows a pseudo-band gap at the Fermi energy and semiconducting behavior was observed for MnB4 .

5.
Dalton Trans ; 42(41): 14653-67, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-24008693

RESUMO

The platinum group metals (PGMs) are widely employed as catalysts, especially for the mitigation of automotive exhaust pollutants. The low natural abundance of PGMs and increasing demand from the expanding automotive sector necessitates strategies to improve the efficiency of PGM use. Conventional catalysts typically consist of PGM nanoparticles dispersed on high surface area oxide supports. However, high PGM loadings must be used to counter sintering, ablation, and deactivation of the catalyst such that sufficient activity is maintained over the operating lifetime. An appealing strategy for reducing metal loading is the substitution of PGM ions into oxide hosts: the use of single atoms (ions) as catalytic active sites represents a highly atom-efficient alternative to the use of nanoparticles. This review addresses the crystal chemistry and reactivity of oxide compounds of precious metals that are, or could be relevant to developing an understanding of the role of precious metal ions in heterogeneous catalysis. We review the chemical conditions that facilitate stabilization of the notoriously oxophobic precious metals in oxide environments, and survey complex oxide hosts that have proven to be amenable to reversible redox cycling of PGMs.

6.
Inorg Chem ; 52(14): 8183-9, 2013 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-23822069

RESUMO

The "lone" 6s electron pair often plays a key role in determining the structure and physical properties of compounds containing sixth-row elements in their lower oxidation states: Tl(+), Pb(2+), and Bi(3+) with the [Xe]4f(14)5d(10)6s(2) electronic configuration. The lone pairs on these ions are associated with reduced structural symmetries, including ferroelectric instabilities and other important phenomena. Here we consider the isoelectronic auride Au(-) ion with the [Xe]4f(14)5d(10)6s(2) electronic configuration. Ab initio density functional theory methods are employed to probe the effect of the 6s lone pair in alkali-metal aurides (KAu, RbAu, and CsAu) with the CsCl structure. The dielectric constants, Born effective charges, and structural instabilities suggest that the 6s lone pair on the Au(-) anion is stereochemically inert to minor mechanical and electrical perturbation. Pressures greater than 14 GPa, however, lead to reorganization of the electronic structure of CsAu and activate lone-pair involvement and Au-Au interactions in bonding, resulting in a transformation from the cubic CsCl structure type to an orthorhombic Cmcm structure featuring zigzag Au-Au chains.

7.
J Phys Condens Matter ; 25(32): 326001, 2013 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-23846793

RESUMO

Magnetic ordering in the geometrically frustrated magnetic oxide spinels MgCr2O4 and ZnCr2O4 is accompanied by a structural change that helps to relieve the frustration. Analysis of high-resolution synchrotron x-ray scattering reveals that the low-temperature structures are well described by a two-phase model of tetragonal I41/amd and orthorhombic Fddd symmetries. The Cr4 tetrahedra of the pyrochlore lattice are distorted at these low-temperatures, with the Fddd phase displaying larger distortions than the I41/amd phase. The spin-Jahn-Teller distortion is approximately one order of magnitude smaller than is observed in first-order Jahn-Teller spinels such as NiCr2O4 and CuCr2O4. In analogy with NiCr2O4 and CuCr2O4, we further suggest that the precise nature of magnetic ordering can itself provide a second driving force for structural change.

8.
Inorg Chem ; 52(2): 540-2, 2013 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-23298445

RESUMO

Chromium tetraboride [orthorhombic, space group Pnnm (No. 58), a = 474.65(9) pm, b = 548.0(1) pm, c = 286.81(5) pm, and R value (all data) = 0.041], formerly described in space group Immm, was found not to be superhard, despite several theory-based prognoses. CrB(4) shows an almost temperature-independent paramagnetism, consistent with low-spin Cr(I) in a metallic compound. Conductivity measurements confirm the metallic character.

9.
J Am Chem Soc ; 134(44): 18185-8, 2012 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-23072644

RESUMO

Substituted N-alkyldinaphthocarbazoles were synthesized using a key double Diels-Alder reaction. The angular nature of the dinaphthocarbazole system allows for increased stability of the conjugated system relative to linear analogues. The N-alkyldinaphthocarbazoles were characterized by UV-vis absorption and fluorescence spectroscopy as well as cyclic voltammetry. X-ray structure analysis based on synchrotron X-ray powder diffraction revealed that the N-dodecyl-substituted compound was oriented in an intimate herringbone packing motif, which allowed for p-type mobilities of 0.055 cm(2) V(-1) s(-1) from solution-processed organic field-effect transistors.

10.
Inorg Chem ; 51(14): 7569-78, 2012 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-22765295

RESUMO

First-principles electronic structure calculations are presented on a variety of Au compounds and species--encompassing a wide range of formal oxidation states, coordination geometries, and chemical environments--in order to understand the potentially systematic behavior in the nature and energetics of d states that are implicated in catalytic activity. In particular, we monitor the position of the d-band center, which has been suggested to signal catalytic activity for reactions such as CO oxidation. We find a surprising absence of any kind of correlation between the formal oxidation state of Au and the position of the d-band center. Instead, we find that the center of the d band displays a nearly linear dependence on the degree of its filling, and this is a general relationship for Au irrespective of the chemistry or geometry of the particular Au compound. Across the compounds examined we find that even small calculated changes in the d-band filling result in a relatively large effect on the position of the d-band center. The results presented here have some important implications for the question of the catalytic activity of Au and indicate that the formal oxidation state is not a determining factor.

11.
J Phys Condens Matter ; 23(46): 465501, 2011 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-22045121

RESUMO

PbPdO2, a ternary compound containing the lone pair active ion Pb²âº and the square planar d8Pd²âº ion, has attracted recent interest because of the suggestion that its electronic structure, calculated within density functional theory using either the local density or the generalized gradient approximation, displays zero-gap behavior. In light of the potential ease of doping magnetic ions in this structure, it has been suggested that the introduction of spin, in conjunction with zero band gap, can result in unusual magnetic ground states and unusual magnetotransport. It is known that most electronic structure calculations do not properly obtain a band gap even for the simple oxide PdO, and instead obtain a metal or a zero-gap semiconductor. Here we present density functional calculations employing a screened hybrid functional which correctly obtain a band gap for the electronic structure of PdO. When employed to calculate the electronic ground state of PbPdO2, a band gap is again obtained, which is consistent with both the experimental data on this compound, as well as a consideration of valence states and of metal-oxygen connectivity in the crystal structure. We also present comparisons of the absolute positions (relative to the vacuum level) of the conduction band minima and the valence band maxima in α-PbO, PdO and PbPdO2, which suggest ease of p-type doping in PbPdO2, that has been observed even in nominally pure materials.

12.
Inorg Chem ; 50(21): 10540-2, 2011 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-21985336

RESUMO

Crystals of chromium tetraboride, a recently proposed candidate superhard material, have been grown for the first time to allow for a first structure refinement of the compound [orthorhombic, space group Immm (No. 71), a = 474.82(8) pm, b = 548.56(8) pm, and c = 287.17(4) pm, R value (all data) = 0.018]. The previously proposed structure model is confirmed, and accurate interatomic distances are presented for the first time. First-principles electronic structure calculations emphasize the unique framework of three-dimensionally linked B atoms that are tetrahedrally coordinated and carry a slightly negative charge. All B-B bonding is of the 2-center 2-electron type. CrB(4) is metallic with a pseudogap at the Fermi level.

13.
Inorg Chem ; 50(17): 8073-84, 2011 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-21800854

RESUMO

Complex oxides--containing at least two different cations on crystallographically distinct sites--have recently been shown to display redox cycling of platinum group metals (PGMs), such as Pd; for example, Pd-substituted complex oxides can reversibly extrude metallic Pd under reducing conditions and then reincorporate Pd(2+) ions into the lattice under oxidizing conditions. The title compounds, YMn(0.5)Fe(0.5-x)Pd(x)O(3-δ) (0 ≤ x ≤ 0.07) crystallizing in the noncentrosymmetric YMnO(3) structure, were prepared using a sol-gel process at 800 °C, and the structures were refined from high-resolution synchrotron X-ray powder diffraction data. Their redox cycling behavior was monitored using synchrotron X-ray diffraction and EXAFS studies. In contrast to the previously studied complex oxide host compounds, YMn(0.5)Fe(0.5-x)Pd(x)O(3-δ) is only modestly tolerant to cycling: repeated redox cycling leads to the formation of PdO, which, on the time-scale of the oxidation cycles, does not reincorporate in the complex oxide lattice. Both oxidized and reduced samples were tested for the oxidation of CO to CO(2) under CO-lean conditions. YMn(0.5)Fe(0.5-x)Pd(x)O(3-δ) performs essentially as well as previously studied YFe(1-x)Pd(x)O(3-δ). The CO oxidation light-off characteristics of the hexagonal hosts are very similar to finely dispersed PdO. Despite evidence that Pd is almost fully dispersed as divalent ions in the host lattice, which is presumably accompanied by the concurrent creation of oxygen vacancies (2 Pd(2+):1 V(O(2-))), the as-prepared hexagonal materials do not display any significant improvement in catalytic activity as a function of Pd substitution level. This suggests that the corner-connected trigonal bipyramids that characterize this structural family do not enable the transport of oxygen through the bulk of the lattice. The study casts light on factors in the solid-state chemistry of precious metal-substituted complex oxides that influence the efficacy of redox cycling of the precious metal, and catalytic performance.

15.
Inorg Chem ; 50(7): 3003-9, 2011 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-21381669

RESUMO

The precipitation of crystals with stoichiometric and ordered arrangements of distinct metal cations often requires carefully designed molecular precursors and/or sufficient activation energy in addition to the necessary mass transport. Here, we study the formation of ordered double perovskite hydroxides, MnSn(OH)(6) and CoSn(OH)(6), of the generic chemical formula, BB'(OH)(6) (no A site), using kinetic control of aqueous hydrolysis from simple metal salt solutions. We find that the precipitation yields ordered compounds only when the B ion is Mn(II) or Co(II), and not when it is any other divalent transition metal ion, or Zn(II). The key step in forming the compounds is the prevention of rapid and uncontrolled hydrolysis of Sn(IV), and this is achieved by a fluoride counteranion. The two compounds, MnSn(OH)(6) and CoSn(OH)(6), are studied by high-resolution synchrotron X-ray diffraction and from the temperature dependence of magnetic behavior. From maximum entropy image restoration of the electron density and from Rietveld analysis, the degree of octahedral distortion and tilting and the small extent of anti-site disorder are determined. From the nonoverlapping electron density, we infer strongly ionic character of bonding. As the first magnetic study of such materials, we report simple paramagnetic behavior with no long-range magnetic order down to 2 K for the Mn(II) compound, while the cobalt compound presents uncompensated antiferromagnetic interactions, attributed to the single-ion anisotropy of octahedral Co(II).


Assuntos
Cobalto/química , Hidróxidos/química , Manganês/química , Hidrólise , Cinética , Modelos Moleculares , Difração de Pó , Água/química
16.
Chemistry ; 16(33): 9998-10006, 2010 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-20680942

RESUMO

Structures of layered metal hydroxides are not well described by traditional crystallography. Total scattering from a synthesis-controlled subset of these materials, as described here, reveals that different cobalt coordination polyhedra cluster within each layer on short length scales, offering new insights and approaches for understanding the properties of these and related layered materials. Structures related to that of brucite [Mg(OH)(2)] are ubiquitous in the mineral world and offer a variety of useful functions ranging from catalysis and ion-exchange to sequestration and energy transduction, including applications in batteries. However, it has been difficult to resolve the atomic structure of these layered compounds because interlayer disorder disrupts the long-range periodicity necessary for diffraction-based structure determination. For this reason, traditional unit-cell-based descriptions have remained inaccurate. Here we apply, for the first time to such layered hydroxides, synchrotron X-ray total scattering methods-analyzing both the Bragg and diffuse components-to resolve the intralayer structure of three different alpha-cobalt hydroxides, revealing the nature and distribution of metal site coordination. The different compounds with incorporated chloride ions have been prepared with kinetic control of hydrolysis to yield different ratios of octahedrally and tetrahedrally coordinated cobalt ions within the layers, as confirmed by total scattering. Real-space analyses indicate local clustering of polyhedra within the layers, manifested in the weighted average of different ordered phases with fixed fractions of tetrahedrally coordinated cobalt sites. These results, hidden from an averaged unit-cell description, reveal new structural characteristics that are essential to understanding the origin of fundamental material properties such as color, anion exchange capacity, and magnetic behavior. Our results also provide further insights into the detailed mechanisms of aqueous hydrolysis chemistry of hydrated metal salts. We emphasize the power of the methods used here for establishing structure-property correlations in functional materials with related layered structures.


Assuntos
Cobalto/química , Hidróxidos/química , Difração de Raios X/métodos , Cinética , Estrutura Molecular , Síncrotrons
17.
Inorg Chem ; 49(10): 4670-80, 2010 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-20394369

RESUMO

La(4)LiAuO(8) and La(2)BaPdO(5), two previously known oxides, are presented as model compounds for examining the role of isolated and immobilized Au(3+) and Pd(2+) ions in heterogeneous catalysis. Structural characterization, stability, surface composition, and electronic structure of these compounds are presented. These are examined in studies ranging from synchrotron X-ray scattering, including pair distribution function (PDF) and maximum entropy method (MEM) analysis, to density functional calculations of the electronic structures. The exceptional stability displayed by these compounds as verified by thermogravimetric analysis can be attributed to the presence of covalent Au-O and Pd-O interactions revealed in MEM studies, which suggests a criterion for stabilizing these highly oxophobic transition metals in oxide environments. Catalytic testing of the two compounds as heterogeneous catalysts in the oxidation of CO to CO(2) are presented. La(2)BaPdO(5) appears to be an effective catalyst for CO oxidation, despite the low surface area of the oxide being used. This is the first time that a fully ordered (rather than doped) Pd(2+) oxide had been used to catalyze CO oxidation. La(4)LiAuO(8) on the other hand, is much less effective at catalyzing CO oxidation. Differences in the reactivities of the two compounds are discussed with respect to differences in their density functional electronic structures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...